• Title/Summary/Keyword: civil structures

검색결과 8,862건 처리시간 0.026초

Investigation of the accuracy of different finite element model reduction techniques

  • Ghannadi, Parsa;Kourehli, Seyed Sina
    • Structural Monitoring and Maintenance
    • /
    • 제5권3호
    • /
    • pp.417-428
    • /
    • 2018
  • In this paper, various model reduction methods were assessed using a shear frame, plane and space truss structures. Each of the structures is one-dimensional, two-dimensional and three-dimensional, respectively. Three scenarios of poor, better, and the best were considered for each of the structures in which 25%, 40%, and 60% of the total degrees of freedom (DOFs) were measured in each of them, respectively. Natural frequencies of the full and reduced order structures were compared in each of the numerical examples to assess the performance of model reduction methods. Generally, it was found that system equivalent reduction expansion process (SEREP) provides full accuracy in the model reduction in all of the numerical examples and scenarios. Iterated improved reduced system (IIRS) was the second-best, providing acceptable results and lower error in higher modes in comparison to the improved reduced system (IRS) method. Although the Guyan's method has very low levels of accuracy. Structures were classified with the excitation frequency. High-frequency structures compared to low-frequency structures have been poor performance in the model reduction methods (Guyan, IRS, and IIRS).

Structural damage detection by principle component analysis of long-gauge dynamic strains

  • Xia, Q.;Tian, Y.D.;Zhu, X.W.;Xu, D.W.;Zhang, J.
    • Structural Engineering and Mechanics
    • /
    • 제54권2호
    • /
    • pp.379-392
    • /
    • 2015
  • A number of acceleration-based damage detection methods have been developed but they have not been widely applied in engineering practices because the acceleration response is insensitive to minor damage of civil structures. In this article, a damage detection approach using the long-gauge strain sensing technology and the principle component analysis technology is proposed. The Long gauge FBG sensor has its special merit for damage detection by measuring the averaged strain over a long-gauge length, and it can be connected each other to make a distributed sensor network for monitoring the large-scale civil infrastructure. A new damage index is defined by performing the principle component analyses of the long-gauge strains measured from the intact and damaged structures respectively. Advantages of the long gauge sensing and the principle component analysis technologies guarantee the effectiveness for structural damage localization. Examples of a simple supported beam and a steel stringer bridge have been investigated to illustrate the successful applications of the proposed method for structural damage detection.

Vertical distributions of lateral forces on base isolated structures considering higher mode effects

  • Tsai, C.S.;Chen, Wen-Shin;Chen, Bo-Jen;Pong, Wen-Shen
    • Structural Engineering and Mechanics
    • /
    • 제23권5호
    • /
    • pp.543-562
    • /
    • 2006
  • Base isolation technology has been accepted as a feasible and attractive way in improving seismic resistance of structures. The seismic design of new seismically isolated structures is mainly governed by the Uniform Building Code (UBC-97) published by the International Conference of Building Officials. In the UBC code, the distribution formula of the inertial (or lateral) forces leads to an inverted triangular shape in the vertical direction. It has been found to be too conservative for most isolated structures through experimental, computational and real earthquake examinations. In this paper, four simple and reasonable design formulae, based on the first mode of the base-isolated structures, for the lateral force distribution on isolated structures have been validated by a multiple-bay three-story base-isolated steel structure tested on the shaking table. Moreover, to obtain more accurate results for base-isolated structures in which higher mode contributions are more likely expected during earthquakes, another four inertial force distribution formulae are also proposed to include higher mode effects. Besides the experimental verification through shaking table tests, the vertical distributions of peak accelerations computed by the proposed design formulae are in good agreement with the recorded floor accelerations of the USC University Hospital during the Northridge earthquake.

Optimum design of viscous dampers to prevent pounding of adjacent structures

  • Karabork, Turan;Aydin, Ersin
    • Earthquakes and Structures
    • /
    • 제16권4호
    • /
    • pp.437-453
    • /
    • 2019
  • This study investigates a new optimal placement method for viscous dampers between structures in order to prevent pounding of adjacent structures with different dynamic characteristics under earthquake effects. A relative displacement spectrum is developed in two single degree of freedom system to reveal the critical period ratios for the most risky scenario of collision using El Centro earthquake record (NS). Three different types of viscous damper design, which are classical, stair and X-diagonal model, are considered to prevent pounding on two adjacent building models. The objective function is minimized under the upper and lower limits of the damping coefficient of the damper and a target modal damping ratio. A new algorithm including time history analyses and numerical optimization methods is proposed to find the optimal dampers placement. The proposed design method is tested on two 12-storey adjacent building models. The effects of the type of damper placement on structural models, the critical period ratios of adjacent structures, the permissible relative displacement limit, the mode behavior and the upper limit of damper are investigated in detail. The results of the analyzes show that the proposed method can be used as an effective means of finding the optimum amount and location of the dampers and eliminating the risk of pounding.

Seismic responses of structure isolated by FPB subject to pounding between the sliding interfaces considering soil-structure interaction

  • Yingna Li;Jingcai Zhang
    • Earthquakes and Structures
    • /
    • 제26권6호
    • /
    • pp.463-475
    • /
    • 2024
  • The study aims to investigate the pounding that occurs between the isolator's ring and slider of isolated structures resulting from excessive seismic excitation, while considering soil-structure interaction. The dynamic responses and poundings of structures subjected a series seismic records were comparatively analyzed for three different soil types and fixed-base structures. A series of parametric studies were conducted to thoroughly discuss the effects of the impact displacement ratio, the FPB friction coefficient ratio, and the radius ratio on the structural dynamic response when considering impact and SSI. It was found that the pounding is extremely brief, with an exceptionally large pounding force generated by impact, resulting in significant acceleration pulse. The acceleration and inter-story shear force of the structure experiencing pounding were greater than those without considering pounding. Sudden changes in the inter-story shear force between the first and second floors of the structure were also observed. The dynamic response of structures in soft ground was significantly lower than that of structures in other ground conditions under the same conditions, regardless of the earthquake wave exciting the structure. When the structure is influenced by pulse-type earthquake records, its dynamic response exhibits a trend of first intensifying and then weakening as the equivalent radius ratio and friction coefficient ratio increase. However, it increases with an increase in the pounding displacement ratio, equivalent radius ratio, friction coefficient ratio, and displacement ratio when the structures are subjected to non-pulse-type seismic record.

Interpreting Conservativeness in Design Criteria for Flexural Strengthening of RC Structures Using Externally Bonded FRP

  • Kansara, Kunal D.;Ibell, Tim J.;Darby, Antony P.;Evernden, Mark
    • International Journal of Concrete Structures and Materials
    • /
    • 제4권1호
    • /
    • pp.25-36
    • /
    • 2010
  • This paper presents the influence of various flexural strengthening design criteria specified by three important design guidelines (ACI440, TR55, FIB14) on the resulting strength, ductility and conservativeness of FRP strengthened RC elements. Various generalised mathematical relations in non-dimensional form are presented that can be employed to develop design aids for the FRP-strengthening process. A design methodology is prescribed based on these equations enabling the designer to optimally and intuitively incorporate sufficient ductility while designing for strength. In order to better interpret conservativeness within design codes, four distinct levels of embedded conservativeness are identified, which cover the entire range of sources of conservativeness. Finally, a detailed parametric study is presented, using the proposed design equations and methodology, to determine the influence of each of these four levels of conservativeness on final design solutions. Specific criteria that are useful while calibrating design guidelines are also presented.

Nonlinear modeling of flat-plate structures using grid beam elements

  • Tian, Ying;Chen, Jianwei;Said, Aly;Zhao, Jian
    • Computers and Concrete
    • /
    • 제10권5호
    • /
    • pp.489-505
    • /
    • 2012
  • This paper presents a simplified grid beam model for simulating the nonlinear response of reinforced concrete flat-plate structures. The beam elements are defined with nonlinear behavior for bending moment and torsion. The flexural stiffness and torsional strength of the beam elements are defined based on experimental data to implicitly account for slab two-way bending effects. A failure criterion that considers the interaction between the punching strength and slab flexural behavior is incorporated in the model. The effects of bond-slip of slab reinforcement on connection stiffness are examined. The proposed grid beam model is validated by simulating large-scale tests of slab-column connections subjected to concentric gravity loading and unbalanced moment. This study also determines the critical parameters for a hysteretic model used to simulate flat-plates subjected to cyclic lateral loading.

Seismic performance of retrofitted URM walls with diagonal and vertical steel strips

  • Darbhanzi, Abbas;Marefat, Mohammad S.;Khanmohammadi, Mohammad;Moradimanesh, Amin;Zare, Hamid
    • Earthquakes and Structures
    • /
    • 제14권5호
    • /
    • pp.449-458
    • /
    • 2018
  • Earthquakes have shown the vulnerability of unreinforced masonry (URM) structures. The aim of this research is to study a technique for in-plane seismic retrofitting of URM walls in which both diagonal and vertical steel strips are added to a single side of a URM wall. Specimens have been tested under quasi-static cyclic lateral load in combination with constant vertical load. The tests show that vertical and diagonal strips cause a significant increase in seismic capacity in terms of both strength (about 200%) and displacement at maximum (about 20%). Furthermore, this technique caused the failure modes of URM walls were influenced.

Fatigue reliability analysis of welded joints of a TLP tether system

  • Amanullah, M.;Siddiqui, N.A.;Umar, A.;Abbas, H.
    • Steel and Composite Structures
    • /
    • 제2권5호
    • /
    • pp.331-354
    • /
    • 2002
  • Tethers of Tension Leg Platform (TLP) are a series structural system where fatigue is the principal mode of failure. The present study is devoted to the fatigue and fatigue fracture reliability study of these tethers. For this purpose, two limit state functions have been derived. These limit state functions are based on S-N curve and fracture mechanics approaches. A detailed methodology for the reliability analysis has then been presented. A sensitivity analysis has been carried out to study the influence of various random variables on tether reliability. The design point, important for probabilistic design, is located on the failure surface. Effect of wind, water depth, service life and number of welded joints are investigated. The effect of uncertainties in various random variables on tether fatigue reliability is highlighted.

Procedure of drawing fragility curve as a function of material parameters

  • 김장호;이정;박정호;홍종석
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계학술발표회 논문집(I)
    • /
    • pp.334-337
    • /
    • 2006
  • Generally, fragility curve has been used in predicting failure of structures due to seismic actions. In this research, the method of drawing fragility curve has been applied to evaluating success/failure of structures and satisfactory/unsatisfactory of concrete mixture performance based on material parameters. In the paper, a detailed explanation of the procedure of drawing fragility curve based on material parameter has been introduced. Fragility curve generating procedure includes generation of virtual data points from limited number of actual data points by bell curve implementation, determination of success/failure status of each data point by assigned criterion, and completion of final fragility curve. For practical applications, workability of concrete mixture content based on "unit water" has been used to obtain fragility curve. Detailed explanation of fragility curve drawing procedure for material parameters is presented.

  • PDF