• Title/Summary/Keyword: civil structures

Search Result 8,948, Processing Time 0.036 seconds

Investigating the effect of bond slip on the seismic response of RC structures

  • Fallah, Mohammad Mehdi;Shooshtari, Ahmad;Ronagh, Hamid Reza
    • Structural Engineering and Mechanics
    • /
    • v.46 no.5
    • /
    • pp.695-711
    • /
    • 2013
  • It is reasonable to assume that reinforced concrete (RC) structures enter the nonlinear range of response during a severe ground motion. Numerical analysis to predict the behaviour therefore must allow for the presence of nonlinear deformations if an accurate estimate of seismic response is aimed. Among the factors contributing to inelastic deformations, the influence of the degradation of the bond slip phenomenon is important. Any rebar slip generates an additional rotation at the end regions of structural members which are not accounted for in a conventional analysis. Although these deformations could affect the seismic response of RC structures considerably, they are often neglected due to the unavailability of suitable models. In this paper, the seismic response of two types of RC structures, designed according to the Iranian concrete code (ABA) and the Iranian seismic code (2800), are evaluated using nonlinear dynamic and static analyses. The investigation is performed using nonlinear dynamic and static pushover analysis considering the deformations due to anchorage slip. The nonlinear analysis results confirm that bond slip significantly influences the seismic behavior of RC structure leading to an increase of lateral deformations by up to 30% depending on the height of building. The outcomes also identify important parameters affecting the extent of this influence.

Development of a self-centering tension-only brace for seismic protection of frame structures

  • Chi, Pei;Guo, Tong;Peng, Yang;Cao, Dafu;Dong, Jun
    • Steel and Composite Structures
    • /
    • v.26 no.5
    • /
    • pp.573-582
    • /
    • 2018
  • This study develops and numerically verifies an innovative seismically resilient bracing system. The proposed self-centering tension-only brace (SC-TOB) is composed of a tensioning system to provide a self-centering response, a frictional device for energy dissipation, and a high-strength steel cable as a bracing element. It is considered to be an improvement over the traditional self-centering braces in terms of lightness, high bearing capacity, load relief, and double-elongation capacity. In this paper, the mechanics of the system are first described. Governing equations deduced from the developed analytical model to predict the behavior of the system are then provided. The results from a finite element validation confirm that the SC-TOB performs as analytically predicted. Key parameters including the activation displacement and load, the self-centering parameter, and equivalent viscous damping are investigated, and their influences on the system behavior are discussed. Finally, a design procedure considering controlled softening behavior is developed and illustrated through a design example.

Cap truss and steel strut to resist progressive collapse in RC frame structures

  • Zahrai, Seyed Mehdi;Ezoddin, Alireza
    • Steel and Composite Structures
    • /
    • v.26 no.5
    • /
    • pp.635-647
    • /
    • 2018
  • In order to improve the efficiency of the Reinforced Concrete, RC, structures against progressive collapse, this paper proposes a procedure using alternate path and specific local resistance method to resist progressive collapse in intermediate RC frame structures. Cap truss consists of multiple trusses above a suddenly removed structural element to restrain excessive collapse and provide an alternate path. Steel strut is used as a brace to resist compressive axial forces. It is similar to knee braces in the geometry, responsible for enhancing ductility and preventing shear force localization around the column. In this paper, column removals in the critical position at the first story of two 5 and 10-story regular buildings strengthened using steel strut or cap truss are studied. Based on nonlinear dynamic analysis results, steel strut can only decrease vertical displacement due to sudden removal of the column at the first story about 23%. Cap truss can reduce the average vertical displacement and column axial force transferred to adjacent columns for the studied buildings about 56% and 61%, respectively due to sudden removal of the column. In other words, using cap truss, the axial force in the removed column transfers through an alternate path to adjacent columns to prevent local or general failure or to delay the progressive collapse occurrence.

A performance-based design method for chloride-induced cover cracking of RC structures

  • Yang, Dong-Hui;Yi, Ting-Hua;Li, Hong-Nan
    • Computers and Concrete
    • /
    • v.20 no.5
    • /
    • pp.573-582
    • /
    • 2017
  • Chloride-induced cover cracking will aggravate the performance deterioration for RC structures under the chlorideladen environment, which may endanger the safety of structures and occupants. Traditional design method cannot ensure that a definite performance is satisfied. To overcome the defects, a study on the performance-based design method was carried out in this paper. Firstly, the limit state functions were established for the corrosion initiation and cover cracking. Thereafter, the uncertainty analysis was performed to study the effects of random factors on the time-dependent performances. Partial factor formulae were deduced through the first-order reliability method for performance verification. Finally, an illustrative example was presented and the sensitivity of cover depth to other parameters was carried out. It is found that the uncertainties of the random variables have great effects on the required cover depth. It is demonstrated that the performance-based design method can ensure that the target performance can be satisfied and support to formulate a rational maintenance and repair strategy for RC structures under the chloride environment.

Health monitoring of steel structures using impedance of thickness modes at PZT patches

  • Park, Seunghee;Yun, Chung-Bang;Roh, Yongrae;Lee, Jong-Jae
    • Smart Structures and Systems
    • /
    • v.1 no.4
    • /
    • pp.339-353
    • /
    • 2005
  • This paper presents the results of a feasibility study on an impedance-based damage detection technique using thickness modes of piezoelectric (PZT) patches for steel structures. It is newly proposed to analyze the changes of the impedances of the thickness modes (frequency range > 1 MHz) at the PZT based on its resonant frequency shifts rather than those of the lateral modes (frequency range > 20 kHz) at the PZT based on its root mean square (RMS) deviations, since the former gives more significant variations in the resonant frequency shifts of the signals for identifying localities of small damages under the same measurement condition. In this paper, firstly, a numerical analysis was performed to understand the basics of the NDE technique using the impedance using an idealized 1-D electro-mechanical model consisting of a steel plate and a PZT patch. Then, experimental studies were carried out on two kinds of structural members of steel. Comparisons have been made between the results of crack detections using the thickness and lateral modes of the PZT patches.

Nonlinear dynamic response of reinforced concrete building retrofitted with buckling restrained braces

  • Guneyisi, Esra Mete;Tunca, Osman;Azez, Ibrahim
    • Earthquakes and Structures
    • /
    • v.8 no.6
    • /
    • pp.1349-1362
    • /
    • 2015
  • This paper presents an analytical study aimed at evaluating the effectiveness of using buckling-restrained braces (BRBs) in mitigating the seismic response of a case study 6 storey reinforced concrete (RC) building. In the design of the BRBs with non-prismatic cross-sections, twelve combinations of ${\alpha}$ and ${\beta}$ design parameters that influence the strength and stiffness of the BRBs, respectively, were considered. The response of the structure with and without BRBs under earthquake ground accelerations were evaluated through nonlinear dynamic analysis. Two sets of ground motions representative of the design earthquake with 10% and 50% exceedance probability in fifty years were taken into account. By comparing the structural performance of the original and buckling restrained braced structures, it was observed that the use of the BRBs were very effective in mitigating the seismic response as a retrofit scheme. However, the selection of the strength and stiffness parameters of the BRBs had considerable effect on the response characteristics of RC structures. For instance, by increasing the value of ${\alpha}$ and by decreasing the value of ${\beta}$ of the buckling-restrained braces, the maximum deformation demand of the structures increased.

LIFE-SPAN SIMULATION AND DESIGN APPROACH FOR REINFORCED CONCRETE STRUCTURES

  • An, Xuehui;Maekawa, Koichi;Ishida, Tetsuya
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.3-17
    • /
    • 2007
  • This paper provides an introduction to life-span simulation and numerical approach to support the performance design processes of reinforced concrete structures. An integrated computational system is proposed for life-span simulation of reinforced concrete. Conservation of moisture, carbon dioxide, oxygen, chloride, calcium and momentum is solved with hydration, carbonation, corrosion, ion dissolution. damage evolution and their thermodynamic/mechanical equilibrium. Coupled analysis of mass transport and damage mechanics associated with steel corrosion is presented for structural performance assessment of reinforced concrete. Multi-scale modeling of micro-pore formation and transport phenomena of moisture and ions are mutually linked for predicting the corrosion of reinforcement and volumetric changes. The interaction of crack propagation with corroded gel migration can also be simulated. Two finite element codes. multi-chemo physical simulation code (DuCOM) and nonlinear dynamic code of structural reinforced concrete (COM3) were combined together to form the integrated simulation system. This computational system was verified by the laboratory scale and large scale experiments of damaged reinforced concrete members under static loads, and has been applied to safety and serviceability assessment of existing structures. Based on the damage details predicted by the nonlinear finite element analytical system, the life-span-cost of RC structures including the original construction costs and the repairing costs for possible damage during the service life can be evaluated for design purpose.

  • PDF

Probabilistic-based assessment of composite steel-concrete structures through an innovative framework

  • Matos, Jose C.;Valente, Isabel B.;Cruz, Paulo J.S.;Moreira, Vicente N.
    • Steel and Composite Structures
    • /
    • v.20 no.6
    • /
    • pp.1345-1368
    • /
    • 2016
  • This paper presents the probabilistic-based assessment of composite steel-concrete structures through an innovative framework. This framework combines model identification and reliability assessment procedures. The paper starts by describing current structural assessment algorithms and the most relevant uncertainty sources. The developed model identification algorithm is then presented. During this procedure, the model parameters are automatically adjusted, so that the numerical results best fit the experimental data. Modelling and measurement errors are respectively incorporated in this algorithm. The reliability assessment procedure aims to assess the structure performance, considering randomness in model parameters. Since monitoring and characterization tests are common measures to control and acquire information about those parameters, a Bayesian inference procedure is incorporated to update the reliability assessment. The framework is then tested with a set of composite steel-concrete beams, which behavior is complex. The experimental tests, as well as the developed numerical model and the obtained results from the proposed framework, are respectively present.

Experimental study on repair of corroded steel beam using CFRP

  • Chen, Meiling;Das, Sreekanta
    • Steel and Composite Structures
    • /
    • v.9 no.2
    • /
    • pp.103-118
    • /
    • 2009
  • It has been reported that more than thirty five percent of steel bridges in the USA are structurally deficient because of structural degradations. The degraded structures need either full replacement or rehabilitation such that they are able to provide the required services for a longer period of time. The cost for repair in most cases is far less than the cost of replacement. Moreover, repair method generally takes less time than replacement and also reduces service interruption time. Modern advanced composites have been used in aerospace and automotive fields since World War II. In the recent past, because of the high strength-to-weight ratio and high stiffness-to-weight ratio, these composite materials have been introduced to civil engineering infrastructures primarily for repair and rehabilitation of concrete structures. However, only a few preliminary studies on repair of corroded steel structures using theses composite materials are reported in the literature available in the public domain. Thus, in this study, a series of laboratory tests was undertaken to evaluate the effectiveness of this repair method using carbon fiber reinforced polymer composite. The paper discusses the test method and test results obtained from these tests.

Effects of vertical component of near-field ground motions on seismic responses of asymmetric structures supported on TCFP bearings

  • Mehr, Nasim Partovi;Khoshnoudian, Faramarz;Tajammolian, Hamed
    • Smart Structures and Systems
    • /
    • v.20 no.6
    • /
    • pp.641-656
    • /
    • 2017
  • The effects of vertical component of earthquakes on torsional amplification due to mass eccentricity in seismic responses of base-isolated structures subjected to near-field ground motions are studied in this paper. 3-, 6- and 9-story superstructures and aspect ratios of 1, 2 and 3 have been modeled as steel special moment frames mounted on Triple Concave Friction Pendulum (TCFP) bearings considering different period and damping ratios. Three-dimensional linear superstructures resting on nonlinear isolators are subjected to both 2 and 3 component near-field ground motions. Effects of mass eccentricity and vertical component of 25 near-field earthquakes on the seismic responses including maximum isolator displacement and base shear as well as peak superstructure acceleration are studied. The results indicate that the effect of vertical component on the responses of asymmetric structures, especially on the base shear is significant. Therefore, it can be claimed that in the absence of the vertical component, mass eccentricity has a little effect on the base shear increase. Additionally, the impact of this component on acceleration is remarkable so the roof acceleration of a nine-story structure has been increased 1.67 times, compared to the case that the structure is subjected to only horizontal components of earthquakes.