• 제목/요약/키워드: civil structures

검색결과 8,862건 처리시간 0.029초

Structural performance assessment of fixed offshore platform based on in-place analysis

  • Raheem, Shehata E. Abdel;Aal, Elsayed M. Abdel;AbdelShafy, Aly G.A.;Mansour, Mahmoud H.;Omar, Mohamed
    • Coupled systems mechanics
    • /
    • 제9권5호
    • /
    • pp.433-454
    • /
    • 2020
  • In-place analysis for offshore platforms is essentially required to make proper design for new structures and true assessment for existing structures. The structural integrity of platform components under the maximum and minimum operating loads of environmental conditions is required for risk assessment and inspection plan development. In-place analyses have been executed to check that the structural member with all appurtenances robustness and capability to support the applied loads in either storm condition or operating condition. A nonlinear finite element analysis is adopted for the platform structure above the seabed and the pile-soil interaction to estimate the in-place behavior of a typical fixed offshore platform. The analysis includes interpretation of dynamic design parameters based on the available site-specific data, together with foundation design recommendations for in-place loading conditions. The SACS software is utilized to calculate the natural frequencies of the model and to obtain the response of platform joints according to in-place analysis then the stresses at selected members, as well as their nodal displacements. The directions of environmental loads and water depth variations have important effects on the results of the in-place analysis behavior. The result shows that the in-place analysis is quite crucial for safe design and operation of offshore platform and assessment for existing offshore structures.

Shear and tensile behaviors of headed stud connectors in double skin composite shear wall

  • Yan, Jia-Bao;Wang, Zhe;Wang, Tao;Wang, Xiao-Ting
    • Steel and Composite Structures
    • /
    • 제26권6호
    • /
    • pp.759-769
    • /
    • 2018
  • This paper studies shear and tensile behaviors of headed stud connectors in double skin composite (DSC) structure. Firstly, 11 push-out tests and 11 tensile tests were performed to investigate the ultimate shear and tensile behaviors of headed stud in DSC shear wall, respectively. The main parameters investigated in this test program were height and layout of headed stud connectors. The test results reported the representative failure modes of headed studs in DSC structures subjected to shear and tension. The shear-slip and tension-elongation behaviors of headed studs in DSC structures were also reported. Influences of different parameters on these shear-slip and tension-elongation behaviors of headed studs were discussed and analyzed. Analytical models were also developed to predict the ultimate shear and tensile resistances of headed stud connectors in DSC shear walls. The developed analytical model incorporated the influence of the dense layout of headed studs in DSC shear walls. The validations of analytical predictions against 22 test results confirmed the accuracy of developed analytical models.

Analysis of seismic mid-column pounding between low rise buildings with unequal heights

  • Jiang, Shan;Zhai, Changhai;Zhang, Chunwei;Ning, Ning
    • Earthquakes and Structures
    • /
    • 제15권4호
    • /
    • pp.395-402
    • /
    • 2018
  • Floor location of adjacent buildings may be different in terms of height elevation, and thus, the slab may hit on the columns of adjacent insufficiently separated buildings during severe ground motions. Such impacts, often referred to as mid-column pounding, can be catastrophic. Substantial pounding damage or even total collapse of structures was often observed in large amount of adjacent low rise buildings. The research on the mid-column pounding between low rise buildings is in urgency need. In present study, the responses of two adjacent low rise buildings with unequal heights and different dynamic properties have been analyzed. Parametric studies have also been conducted to assess the influence of story height difference, gap distance and input direction of ground motion on the effect of structural pounding response. Another emphasis of this study is to analyze the near-fault effect, which is important for the structures located in the near-fault area. The analysis results show that collisions exhibit significant influence on the local shear force response of the column suffering impact. Because of asymmetric configuration of systems, the structural seismic behavior is distinct by varying the incident directions of the ground motions. Results also show that near-fault earthquakes induced ground motions can cause more significant effect on the pounding responses.

Behavior and resistance of truss-type shear connector for composite steel-concrete beams

  • Lima, Jerfson M.;Bezerra, Luciano M.;Bonilla, Jorge;Silva, Ramon S.Y.R.C.;Barbosa, Wallison C.S.
    • Steel and Composite Structures
    • /
    • 제36권5호
    • /
    • pp.569-586
    • /
    • 2020
  • The behavior of composite steel-concrete beams depends on the transmission of forces between two parts: the concrete slab and the steel I-beam. The shear connector is responsible for the interaction between these two parts. Recently, an alternative shear connector, called Truss Type connector, has been developed; it aligns efficient structural behavior, fast construction and implementation, and low cost when compared to conventional connectors applied in composite structures. However, there is still a lack of full understanding of the mechanical behavior of the Truss Type connector, due to its novelty. Thus, this study aims to analyze the influence of variation of geometric and physical parameters on the shear resistance of the Truss Type connector. In order to investigate those parameters, a non-linear finite element model, able to simulate push-out tests of Truss Type connectors, was specifically developed and validated with experimental results. A thorough parametric study, varying the height, the angle between rods, the diameter, and the concrete strength, was conducted to evaluate the shear resistance of the Truss Type connector. In addition, an equation to predict the resistance of the original Truss Type shear connector was proposed.

Experimental investigation of the aeroelastic behavior of a complex prismatic element

  • Nguyen, Cung Huy;Freda, Andrea;Solari, Giovanni;Tubino, Federica
    • Wind and Structures
    • /
    • 제20권5호
    • /
    • pp.683-699
    • /
    • 2015
  • Lighting poles and antenna masts are typically high, slender and light structures. Moreover, they are often characterized by distributed eccentricities that make very complex their shape. Experience teaches that this structural type frequently suffers severe damage and even collapses due to wind actions. To understand and interpret the aerodynamic and aeroelastic behavior of lighting poles and antenna masts, this paper presents the results of static and aeroelastic wind tunnel tests carried out on a complex prismatic element representing a segment of the shaft of such structures. Static tests are aimed at determining the aerodynamic coefficients and the Strouhal number of the test element cross-section; the former are used to evaluate the critical conditions for galloping occurrence based on quasi-steady theory; the latter provides the critical conditions for vortex-induced vibrations. Aeroelastic tests are aimed at reproducing the real behavior of the test element and at verifying the validity and reliability of quasi-steady theory. The galloping hysteresis phenomenon is identified through aeroelastic experiments conducted on increasing and decreasing the mean wind velocity.

An integrated visual-inertial technique for structural displacement and velocity measurement

  • Chang, C.C.;Xiao, X.H.
    • Smart Structures and Systems
    • /
    • 제6권9호
    • /
    • pp.1025-1039
    • /
    • 2010
  • Measuring displacement response for civil structures is very important for assessing their performance, safety and integrity. Recently, video-based techniques that utilize low-cost high-resolution digital cameras have been developed for such an application. These techniques however have relatively low sampling frequency and the results are usually contaminated with noises. In this study, an integrated visual-inertial measurement method that combines a monocular videogrammetric displacement measurement technique and a collocated accelerometer is proposed for displacement and velocity measurement of civil engineering structures. The monocular videogrammetric technique extracts three-dimensional translation and rotation of a planar target from an image sequence recorded by one camera. The obtained displacement is then fused with acceleration measured from a collocated accelerometer using a multi-rate Kalman filter with smoothing technique. This data fusion not only can improve the accuracy and the frequency bandwidth of displacement measurement but also provide estimate for velocity. The proposed measurement technique is illustrated by a shake table test and a pedestrian bridge test. Results show that the fusion of displacement and acceleration can mitigate their respective limitations and produce more accurate displacement and velocity responses with a broader frequency bandwidth.

A simple quasi-3D sinusoidal shear deformation theory with stretching effect for carbon nanotube-reinforced composite beams resting on elastic foundation

  • Hadji, Lazreg;Zouatnia, Nafissa;Meziane, Mohamed Ait Amar;Kassoul, Amar
    • Earthquakes and Structures
    • /
    • 제13권5호
    • /
    • pp.509-518
    • /
    • 2017
  • The objective of the present paper is to investigate the bending behavior with stretching effect of carbon nanotube-reinforced composite (CNTRC) beams. The beams resting on the Pasternak elastic foundation, including a shear layer and Winkler spring, are considered. The single-walled carbon nanotubes (SWCNTs) are aligned and distributed in polymeric matrix with different patterns of reinforcement. The material properties of the CNTRC beams are estimated by using the rule of mixture. The significant feature of this model is that, in addition to including the shear deformation effect and stretching effect it deals with only 4 unknowns without including a shear correction factor. The single-walled carbon nanotubes (SWCNTs) are aligned and distributed in polymeric matrix with different patterns of reinforcement. The material properties of the CNTRC beams are assessed by employing the rule of mixture. The equilibrium equations have been obtained using the principle of virtual displacements. The mathematical models provided in this paper are numerically validated by comparison with some available results. New results of bending analyses of CNTRC beams based on the present theory with stretching effect is presented and discussed in details. the effects of different parameters of the beam on the bending responses of CNTRC beam are discussed.

Experimental and numerical analysis of RC structure with two leaf cavity wall subjected to shake table

  • Onat, Onur;Lourenco, Paulo B.;Kocak, Ali
    • Structural Engineering and Mechanics
    • /
    • 제55권5호
    • /
    • pp.1037-1053
    • /
    • 2015
  • This paper presents finite element (FE) based pushover analysis of a reinforced concrete structure with a two-leaf cavity wall (TLCW) to estimate the performance level of this structure. In addition to this, an unreinforced masonry (URM) model was selected for comparison. Simulations and analyses of these structures were performed using the DIANA FE program. The mentioned structures were selected as two storeys and two bays. The dimensions of the structures were scaled 1:1.5 according to the Cauchy Froude similitude law. A shake table experiment was implemented on the reinforced concrete structure with the two-leaf cavity wall (TLCW) at the National Civil Engineering Laboratory (LNEC) in Lisbon, Portugal. The model that simulates URM was not experimentally studied. This structure was modelled in the same manner as the TLCW. The purpose of this virtual model is to compare the respective performances. Two nonlinear analyses were performed and compared with the experimental test results. These analyses were carried out in two phases. The research addresses first the analysis of a structure with only reinforced concrete elements, and secondly the analysis of the same structure with reinforced concrete elements and infill walls. Both researches consider static loading and pushover analysis. The experimental pushover curve was plotted by the envelope of the experimental curve obtained on the basis of the shake table records. Crack patterns, failure modes and performance curves were plotted for both models. Finally, results were evaluated on the basis of the current regulation ASCE/SEI 41-06.

Stochastic DLV method for steel truss structures: simulation and experiment

  • An, Yonghui;Ou, Jinping;Li, Jian;Spencer, B.F. Jr.
    • Smart Structures and Systems
    • /
    • 제14권2호
    • /
    • pp.105-128
    • /
    • 2014
  • The stochastic damage locating vector (SDLV) method has been studied extensively in recent years because of its potential to determine the location of damage in structures without the need for measuring the input excitation. The SDLV method has been shown to be a particularly useful tool for damage localization in steel truss bridges through numerical simulation and experimental validation. However, several issues still need clarification. For example, two methods have been suggested for determining the observation matrix C identified for the structural system; yet little guidance has been provided regarding the conditions under which the respective formulations should be used. Additionally, the specific layout of the sensors to achieve effective performance with the SDLV method and the associated relationship to the specific type of truss structure have yet to be explored. Moreover, how the location of truss members influences the damage localization results should be studied. In this paper, these three issues are first investigated through numerical simulation and subsequently the main results are validated experimentally. The results of this paper provide guidance on the effective use of the SDLV method.

Studying the Park-Ang damage index of reinforced concrete structures based on equivalent sinusoidal waves

  • Mazloom, Moosa;Pourhaji, Pardis;Shahveisi, Masoud;Jafari, Seyed Hassan
    • Structural Engineering and Mechanics
    • /
    • 제72권1호
    • /
    • pp.83-97
    • /
    • 2019
  • In this research, the vulnerability of some reinforced concrete frames with different stories are studied based on the Park-Ang Damage Index. The damages of the frames are investigated under various earthquakes with nonlinear dynamic analysis in IDARC software. By examining the most important characteristics of earthquake parameters, the damage index and vulnerability of these frames are investigated in this software. The intensity of Erias, velocity spectral intensity (VSI) and peak ground velocity (PGV) had the highest correlation, and root mean square of displacement ($D_{rms}$) had the lowest correlation coefficient among the parameters. Then, the particle swarm optimization (PSO) algorithm was used, and the sinusoidal waves were equivalent to the used earthquakes according to the most influential parameters above. The damage index equivalent to these waves is estimated using nonlinear dynamics analysis. The comparison between the damages caused by earthquakes and equivalent sinusoidal waves is done too. The generations of sinusoidal waves equivalent to different earthquakes are generalized in some reinforced concrete frames. The equivalent sinusoidal wave method was exact enough because the greatest difference between the results of the main and artificial accelerator damage index was about 5 percent. Also sinusoidal waves were more consistent with the damage indices of the structures compared to the earthquake parameters.