• Title/Summary/Keyword: civil structures

Search Result 8,769, Processing Time 0.029 seconds

Active control for Seismic Response Reduction using Modal-fuzzy Approach (모달 퍼지 이론을 이용한 지진하중을 받는 구조물의 능동제어)

  • Choi, Kang-Min;Park, Kyu-Sik;Kim, Chun-Ho;Lee, In-Won
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.513-520
    • /
    • 2005
  • An active modal-fuzzy control method using hydraulic actuators is presented for seismic response reduction. In the proposed control system, a new fuzzy controller designed in the modal space produces the desired active control force. This type controller has all advantages of the fuzzy control algorithm and modal approach. Since it is very difficult to select input variables used in fuzzy controller among an amount of state variables in the active fuzzy control system, the presented algorithm adopts the modal control algorithm which is able to consider more easily information of all state variables in civil structures that are usually dominated by first few modes. In other words, all information of the whole structure can be considered in the control algorithm evaluated to reduce seismic responses and it can be efficient for especially civil structures. In addition, the presented algorithm is expected to magnify utility and performance caused by efficiency that the fuzzy algorithm can handle complex model more easily. An active modal-fuzzy control scheme is applied together with a Kalman filter and a low-pass filter to be applicable to real civil structures. A Kalman filter is considered to estimate modal states and a low-pass filter was used to eliminate spillover problem. The results of the numerical simulations for a wide amplitude range of loading conditions show that the proposed active modal-fuzzy control system can be beneficial in reducing seismic responses of civil structures.

  • PDF

Monitoring degradation in concrete filled steel tubular sections using guided waves

  • Beena, Kumari;Shruti, Sharma;Sandeep, Sharma;Naveen, Kwatra
    • Smart Structures and Systems
    • /
    • v.19 no.4
    • /
    • pp.371-382
    • /
    • 2017
  • Concrete filled steel tubes are extensively applied in engineering structures due to their resistance to high tensile and compressive load and convenience in construction. But one major flaw, their vulnerability to environmental attack, can severely reduce the strength and life of these structures. Degradation due to corrosion of steel confining the concrete is one of the major durability problems faced by civil engineers to maintain these structures. The problem accelerates as inner surface of steel tube is in contact with concrete which serves as electrolyte. If it remains unnoticed, it further accelerates and can be catastrophic. This paper discusses a non-destructive degradation monitoring technique for early detection corrosion in steel tubes in CFST members. Due to corrosion, damage in the form of debonding and pitting occurs in steel sections. Guided ultrasonic waves have been used as a feasible and attractive solution for the detection and monitoring of corrosion damages in CFST sections. Guided waves have been utilized to monitor the effect of notch and debond defects in concrete filled steel tubes simulating pitting and delamination of steel tubes from surrounding concrete caused by corrosion. Pulse transmission has been used to monitor the healthy and simulated damaged specimens. A methodology is developed and successfully applied for the monitoring of concrete filled steel tubular sections undergoing accelerated chloride corrosion. The ultrasonic signals efficiently narrate the state of steel tube undergoing corrosion.

Generalization of the statistical moment-based damage detection method

  • Zhang, J.;Xu, Y.L.;Xia, Y.;Li, J.
    • Structural Engineering and Mechanics
    • /
    • v.38 no.6
    • /
    • pp.715-732
    • /
    • 2011
  • A novel structural damage detection method with a new damage index has been recently proposed by the authors based on the statistical moments of dynamic responses of shear building structures subject to white noise ground motion. The statistical moment-based damage detection (SMBDD) method is theoretically extended in this paper with general application. The generalized SMBDD method is more versatile and can identify damage locations and damage severities of many types of building structures under various external excitations. In particular, the incomplete measurements can be considered by the proposed method without mode shape expansion or model reduction. Various damage scenarios of two general forms of building structures with incomplete measurements are investigated in consideration of different excitations. The effects of measurement noise are also investigated. The damage locations and damage severities are correctly identified even when a high noise level of 15% and incomplete measurements are considered. The effectiveness and versatility of the generalized SMBDD method are demonstrated.

Wind load characteristics of large billboard structures with two-plate and three-plate configurations

  • Wang, Dahai;Chen, Xinzhong;Li, Jie;Cheng, Hao
    • Wind and Structures
    • /
    • v.22 no.6
    • /
    • pp.703-721
    • /
    • 2016
  • This paper presents a wind tunnel study of wind loads of the large billboard structures with two-plate and three-plate configurations. Synchronous dynamic pressures on the surfaces of plates are measured, and the characteristics of local pressures, integrated forces on each individual plate and on the overall structures are investigated. The influences of wind direction and plate configuration on wind load characteristics, and the contributions of overall crosswind load and torque to the stress responses are examined. The results showed that the wind load characteristics of windward plate in both two- and three-plate configurations are very similar. The contribution of overall crosswind load makes the total resultant force from both alongwind and crosswind loads less sensitive to wind direction in the case of three-plate configuration. The overall torque is lower than the value specified in current codes and standards, and its contribution is less significant in both two-plate and three-plate configurations.

A new nonlocal hyperbolic shear deformation theory for nanobeams embedded in an elastic medium

  • Aissani, Khadidja;Bouiadjra, Mohamed Bachir;Ahouel, Mama;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.55 no.4
    • /
    • pp.743-763
    • /
    • 2015
  • This work presents a new nonlocal hyperbolic shear deformation beam theory for the static, buckling and vibration of nanoscale-beams embedded in an elastic medium. The present model is able to capture both the nonlocal parameter and the shear deformation effect without employing shear correction factor. The nonlocal parameter accounts for the small size effects when dealing with nanosize structures such as nanobeams. Based on the nonlocal differential constitutive relations of Eringen, the equations of motion of the nanoscale-beam are obtained using Hamilton's principle. The effect of the surrounding elastic medium on the deflections, critical buckling loads and frequencies of the nanobeam is investigated. Both Winkler-type and Pasternak-type foundation models are used to simulate the interaction of the nanobeam with the surrounding elastic medium. Analytical solutions are presented for a simply supported nanoscale-beam, and the obtained results compare well with those predicted by the other nonlocal theories available in literature.

Large displacement analysis of inelastic frame structures by convected material frame approach

  • Chiou, Yaw-Jeng;Wang, Yeon-Kang;Hsiao, Pang-An;Chen, Yi-Lung
    • Structural Engineering and Mechanics
    • /
    • v.13 no.2
    • /
    • pp.135-154
    • /
    • 2002
  • This paper presents the convected material frame approach to study the nonlinear behavior of inelastic frame structures. The convected material frame approach is a modification of the co-rotational approximation by incorporating an adaptive convected material frame in the basic definition of the displacement vector and strain tensor. In the formulation, each discrete element is associated with a local coordinate system that rotates and translates with the element. For each load increment, the corresponding strain-displacement and nodal force-stress relationships are defined in the updated local coordinates, and based on the updated element geometry. The rigid body motion and deformation displacements are decoupled for each increment. This modified approach incorporates the geometrical nonlinearities through the continuous updating of the material frame geometry. A generalized nonlinear function is used to derive the inelastic constitutive relation and the kinematic hardening is considered. The equation of motion is integrated by an explicit procedure and it involves only vector assemblage and vector storage in the analysis by assuming a lumped mass matrix of diagonal form. Several numerical examples are demonstrated in close agreement with the solutions obtained by the ANSYS code. Numerical studies show that the proposed approach is capable of investigating large deflection of inelastic planar structures and providing an excellent numerical performance.

Retrofitting of squat masonry walls by FRP grids bonded by cement-based mortar

  • Popa, Viorel;Pascu, Radu;Papurcu, Andrei;Albota, Emil
    • Earthquakes and Structures
    • /
    • v.10 no.1
    • /
    • pp.125-139
    • /
    • 2016
  • For seismic retrofitting of masonry walls, the use of fibre reinforced cement-based mortar for bonding the fibre grids can eliminate some of the shortcomings related to the use of resin as bonding material. The results of an experimental testing program on masonry walls retrofitted with fibre reinforced mortar and fibre grids are presented in this paper. Seven squat masonry walls were tested under unidirectional lateral displacement reversals and constant axial load. Steel anchors were used to increase the effectiveness of the bond between the fibre grids and the masonry walls. Application of fibre grids on both lateral faces of the walls effectively improved the hysteretic behaviour and specimens could be loaded until slip occurred in the horizontal joint between the masonry and the bottom concrete stub. Application of the fibre grids on a single face did not effectively improve the hysteretic behaviour. Retrofitting with fibre reinforced mortar only prevented the early damage but did not effectively increase deformation capacity. When the boundaries of the cross sections were not properly confined, midplane splitting of the masonry walls occurred. Steel anchors embedded in the walls in the corners area effectively prevented this type of failure.

Experimental investigation on the behaviour of UHPC-steel composite slabs under hogging moment

  • Gao, Xiao-Long;Wang, Jun-Yan;Bian, Chen;Xiao, Ru-Cheng;Ma, Biao
    • Steel and Composite Structures
    • /
    • v.42 no.6
    • /
    • pp.765-777
    • /
    • 2022
  • Ultra high performance concrete (UHPC) can be used in the UHPC-steel composite structures especially for bridge structures to achieve high stiffness and high fatigue resistance with low self-weight. The structural performances of UHPC-steel composite slabs subjected to hogging moment have a significant influence on the global stiffness and durability of UHPC-steel composite structures. In order to study the structural behaviors of non-steam-cured UHPC-steel composite slabs subjected to negative moment, five composite slabs combined the thin UHPC layers to steel plates via shear stud connecters with the diameter of 16mm were fabricated and tested under negative moment. The test program aimed to investigate the effect of stud spacing and longitudinal reinforcement ratios on the failure mode, load-deflection behaviors, cracking patterns, bond-slips, and carrying capacities of composite slabs subjected to negative moment. In addition, direct tensile tests for the dog-bone UHPC specimens with longitudinal reinforcement bars were carried out to study the effect of reinforcement bars on the tensile strength of UHPC in the thin structure members. Based on the experimental results, analytical models were also developed to predict the cracking load and ultimate load of UHPC-steel composite slabs subjected to negative moment.

Steel frame fragility curve evaluation under the impact of two various category of earthquakes

  • Wang, Feipeng;Miao, Jie;Fang, Zhichun;Wu, Siqi;Li, Xulong;Momeni, Younes
    • Earthquakes and Structures
    • /
    • v.22 no.1
    • /
    • pp.15-23
    • /
    • 2022
  • One of the key tools in assessing the seismic vulnerability of the structures is the use of fragile functions, which is the possibility of damage from a particular damage surface for several levels of risk from the seismic movements of the earth. The aim of this study is to investigate the effect of two categories of earthquake events on the fragile curve (FRC) of the steel construction system. In this study, the relative lateral displacement of the structures is considered as a damage criterion. The limits set for modifying the relative lateral position in the HAZUS instruction are used to determine the failure modes, which include: slight, moderate, extensive and complete. The results show, as time strong-motion increases, the probability of exceeding (PoE) increases (for Peak ground acceleration (PGA) less than 0.5). The increase in seismic demand increases the probability of exceeding. In other words, it increases the probability of exceeding, if the maximum earthquake acceleration increases. Also, 7-storey model in extensive mode has 20 and 26.5% PoE larger than 5- and 3-storey models, respectively.

Performance-based drift prediction of reinforced concrete shear wall using bagging ensemble method

  • Bu-Seog Ju;Shinyoung Kwag;Sangwoo Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.2747-2756
    • /
    • 2023
  • Reinforced Concrete (RC) shear walls are one of the civil structures in nuclear power plants to resist lateral loads such as earthquakes and wind loads effectively. Risk-informed and performance-based regulation in the nuclear industry requires considering possible accidents and determining desirable performance on structures. As a result, rather than predicting only the ultimate capacity of structures, the prediction of performances on structures depending on different damage states or various accident scenarios have increasingly needed. This study aims to develop machine-learning models predicting drifts of the RC shear walls according to the damage limit states. The damage limit states are divided into four categories: the onset of cracking, yielding of rebars, crushing of concrete, and structural failure. The data on the drift of shear walls at each damage state are collected from the existing studies, and four regression machine-learning models are used to train the datasets. In addition, the bagging ensemble method is applied to improve the accuracy of the individual machine-learning models. The developed models are to predict the drifts of shear walls consisting of various cross-sections based on designated damage limit states in advance and help to determine the repairing methods according to damage levels to shear walls.