• Title/Summary/Keyword: civil structures

Search Result 8,766, Processing Time 0.028 seconds

Identifying significant earthquake intensity measures for evaluating seismic damage and fragility of nuclear power plant structures

  • Nguyen, Duy-Duan;Thusa, Bidhek;Han, Tong-Seok;Lee, Tae-Hyung
    • Nuclear Engineering and Technology
    • /
    • v.52 no.1
    • /
    • pp.192-205
    • /
    • 2020
  • Seismic design practices and seismic response analyses of civil structures and nuclear power plants (NPPs) have conventionally used the peak ground acceleration (PGA) or spectral acceleration (Sa) as an intensity measure (IM) of an earthquake. However, there are many other earthquake IMs that were proposed by various researchers. The aim of this study is to investigate the correlation between seismic responses of NPP components and 23 earthquake IMs and identify the best IMs for correlating with damage of NPP structures. Particularly, low- and high-frequency ground motion records are separately accounted in correlation analyses. An advanced power reactor NPP in Korea, APR1400, is selected for numerical analyses where containment and auxiliary buildings are modeled using SAP2000. Floor displacements and accelerations are monitored for the non- and base-isolated NPP structures while shear deformations of the base isolator are additionally monitored for the base-isolated NPP. A series of Pearson's correlation coefficients are calculated to recognize the correlation between each of the 23 earthquake IMs and responses of NPP structures. The numerical results demonstrate that there is a significant difference in the correlation between earthquake IMs and seismic responses of non-isolated NPP structures considering low- and high-frequency ground motion groups. Meanwhile, a trivial discrepancy of the correlation is observed in the case of the base-isolated NPP subjected to the two groups of ground motions. Moreover, a selection of PGA or Sa for seismic response analyses of NPP structures in the high-frequency seismic regions may not be the best option. Additionally, a set of fragility curves are thereafter developed for the base-isolated NPP based on the shear deformation of lead rubber bearing (LRB) with respect to the strongly correlated IMs. The results reveal that the probability of damage to the structure is higher for low-frequency earthquakes compared with that of high-frequency ground motions.

Optimal sensor placement for structural health monitoring based on deep reinforcement learning

  • Xianghao Meng;Haoyu Zhang;Kailiang Jia;Hui Li;Yong Huang
    • Smart Structures and Systems
    • /
    • v.31 no.3
    • /
    • pp.247-257
    • /
    • 2023
  • In structural health monitoring of large-scale structures, optimal sensor placement plays an important role because of the high cost of sensors and their supporting instruments, as well as the burden of data transmission and storage. In this study, a vibration sensor placement algorithm based on deep reinforcement learning (DRL) is proposed, which can effectively solve non-convex, high-dimensional, and discrete combinatorial sensor placement optimization problems. An objective function is constructed to estimate the quality of a specific vibration sensor placement scheme according to the modal assurance criterion (MAC). Using this objective function, a DRL-based algorithm is presented to determine the optimal vibration sensor placement scheme. Subsequently, we transform the sensor optimal placement process into a Markov decision process and employ a DRL-based optimization algorithm to maximize the objective function for optimal sensor placement. To illustrate the applicability of the proposed method, two examples are presented: a 10-story braced frame and a sea-crossing bridge model. A comparison study is also performed with a genetic algorithm and particle swarm algorithm. The proposed DRL-based algorithm can effectively solve the discrete combinatorial optimization problem for vibration sensor placements and can produce superior performance compared with the other two existing methods.

Seismic Performance Evaluation of Apartment Buildings with Central Core

  • Lee, Joonho;Han, Seungho;Kim, Jinkoo
    • International Journal of High-Rise Buildings
    • /
    • v.3 no.1
    • /
    • pp.9-19
    • /
    • 2014
  • In this study the seismic performances of reinforced concrete apartment buildings with Y- and box-shaped plans having central core are investigated. Three types of model structures are designed for each shape depending on the amount of shear partition walls: structures with all shear walls, structures with all columns except the core walls, and structures with shear walls and columns combined. The required amount of concrete to satisfy the specified design loads is the largest in the all shear wall structures, and decreases as more and more shear walls are replaced with columns. The amount of re-bars increased significantly in the flat plate structures. According to nonlinear static and dynamic analysis results, the structures with all shear walls and all columns turn out to have the largest and the smallest strengths, respectively. However it is observed that even the all-column structures with shear core have proper load resisting capacity for design level seismic load.

Fire Resistance Studies on High Strength Steel Structures

  • Wang, Wei-Yong;Xia, Yue;Li, Guo-Qiang
    • International Journal of High-Rise Buildings
    • /
    • v.7 no.4
    • /
    • pp.287-298
    • /
    • 2018
  • High strength steels have been widely applied in recent years due to high strength and good working performance. When subjected to fire conditions, the strength and elastic modulus of high strength steels deteriorate significantly and hence the load bearing capacity of structures reduces at elevated temperatures. The reduction factors of mechanical properties of high strength steels are quite different from mild steels. Therefore, the fire design methods deduced from mild steel structures are not applicable to high strength steel structures. In recent ten years, the first author of this paper has carried out a lot of fundamental research on fire behavior of high strength steels and structures. Summary of these research is presented in this paper, including mechanical properties of high strength steels at elevated temperature and after fire exposure, creep response of high strength steels at elevated temperature, residual stresses of welded high strength steel member after fire exposure, fire resistance of high strength steel columns, fire resistance of high strength steel beams, local buckling of high strength steel members, and residual strength of high strength steel columns after fire exposure. The results show that the mechanical properties of high strength steel in fire condition and the corresponding fire resistance of high strength steel structures are different from those of mild steel and structures, and the fire design methods recommended in current design codes are not applicable to high strength steel structures.

The dynamic response of adjacent structures with the shallow foundation of different height and distance on liquefiable saturated sand

  • Jilei Hu;Luoyan Wang;Wenxiang Shen;Fengjun Wei;Rendong Guo;Jing Wang
    • Earthquakes and Structures
    • /
    • v.25 no.2
    • /
    • pp.135-148
    • /
    • 2023
  • The structure-soil-structure interaction (SSSI) effect in adjacent structures may affect the liquefaction-induced damage of shallow foundation structures. The existing studies only analysed the independent effects on the structural dynamic response but ignored the coupling effect of height difference and distance of adjacent structures (F) on liquefied foundations on the dynamic response. Therefore, this paper adopts finite element and finite difference coupled dynamic analysis method to discuss the effect of the F on the seismic response of shallow foundation structures. The results show that the effect of the short structure on the acceleration response of the tall structure can be neglected as F increases when the height difference reaches 2 times the height of the short structure. The beneficial effect of SSSI on short structures is weakened under strong seismic excitations, and the effect of the increase of F on the settlement ratio gradually decreases, which causes a larger rotation hazard. When the distance is smaller than the foundation width, the short structure will exceed the rotation critical value and cause structural damage. When the distance is larger than the foundation width, the rotation angle is within the safe range (0.02 rad).

Structural behavior of the suspen-dome structures and the cable dome structures with sliding cable joints

  • Liu, Hongbo;Chen, Zhihua
    • Structural Engineering and Mechanics
    • /
    • v.43 no.1
    • /
    • pp.53-70
    • /
    • 2012
  • Sliding cable joints have been developed for the cable dome structures and the suspen-dome structures to reduce the cable pre-stressing loss and obtain a uniform inner force in each hoop cable. However, the relevant investigation is less addressed on the structural behavior of the cable dome structures and the suspen-dome structures with sliding cable joints due to the lack of analysis techniques. In this paper, a closed sliding polygonal cable element was established to analyze the structural behavior of the cable dome structures and the suspen-dome structures with sliding cable joints. The structural behaviors with sliding cable joints were obtained.

Performance Evaluation of Viscoelastic Dampers installed in the Steel Frame Structures Using the shaking table set (진동대 실험을 통한 강골조 구조물에 설치된 점탄성 감쇠기의 성능평가)

  • Kim, Jin-Gu;Seo, Hyun-Su;Kwon, Min-Ho;Lim, Jeong-Hee;Kim, Jin-Sup
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.7 no.1
    • /
    • pp.32-38
    • /
    • 2016
  • It has been many efforts for reinforcement of existing structure since the number of earthquake has been increased world widely. Especially the occurrence of earthquake surrounding area of Korean peninsular is dramatically increased. Since the buildings in Korea have not been designed to carry the lateral and shear force caused by earthquake, the building will experience massive damages even under moderate earthquake. For this reason, the viscoelastic damper is proposed in this paper to enhance the earthquake resistance of a steel frame buildings. The viscoelastic dampers have been able to increase the overall damping of the structure significantly, hence improving the overall performance of dynamically sensitive structures. In this paper, Viscoelastic dampers designed are consists of FRP panel and viscoelastic material. In this paper, evaluate the performance of the viscoelastic damper through the experiment.

Damage evaluation of masonry buildings during Kahramanmaraş (Türkiye) earthquakes on February 06, 2023

  • Ercan Isik;Aydin Buyuksarac;Fatih Avcil;Enes Arkan;M.Cihan Aydin;Ali Emre Ulu
    • Earthquakes and Structures
    • /
    • v.25 no.3
    • /
    • pp.209-221
    • /
    • 2023
  • The Mw=7.7 (Pazarcık-Kahramanmaraş) and Mw=7.6 (Elbistan-Kahramanmaraş) earthquakes that occurred in Türkiye on 06.02.2023 with 9 hours' intervals, caused great losses of life and property as the biggest catastrophe in the instrumental period. The earthquakes affecting an area of 14% of the country were enormous and caused a great deal of loss of life and damage. Numerous buildings have collapsed or damaged at different levels, both in the city centers and in rural areas. Within the scope of this study, masonry structure damage built from different types of materials in the earthquake region was taken into consideration. In this study, the damage and causes of such masonry structures that do not generally receive engineering services were examined and explained in detail. Insufficient interlocking between wall-wall and wall-roof, inadequate masonry, lack of horizontal and vertical bond beams, usage of low-strength materials, poor workmanship, and heavy earthen roof are commonly caused to structural damages. Separation at the corner point and out-of-plane mechanism in structural walls, and heavy earthen roof damages are common types of damage in masonry structures.

Damages to Rubble Stone Masonry Structures during the January 24, 2020, Sivrice (Elazığ) Earthquake in Turkey

  • Ural, Ali;Firat, Fatih K.;Kara, Mehmet E.;Celik, Tulin;Tanriverdi, Sukran
    • Earthquakes and Structures
    • /
    • v.23 no.3
    • /
    • pp.231-243
    • /
    • 2022
  • The earthquake with a magnitude of Mw 6.8, which occurred on January 24, 2020, hit Sivrice (Elazığ) province of Turkey. The earthquake area takes place on the East Anatolian Fault Zone (EAFZ) located between the Arabian and Turkish plates, one of the most active seismic regions in Turkey. According to the Disaster and Emergency Management Presidency of Turkey (AFAD), 584 buildings collapsed, 6845 were heavily damaged, 1207 were moderately damaged, and 14389 were slightly damaged. The authors went to the region of earthquake after the mainshock to investigate the earthquake performances of masonry buildings. This paper presents the seismological aspects of the earthquake, acceleration records, and response spectra with different damping ratios. Furthermore, some typical damages and failure mechanisms on masonry buildings like rubble stone dwellings and minarets are discussed with illustrative photos. Although many major earthquakes have occurred in the region, similar mistakes are still being made in masonry building construction. In consequence, some suggestions viewpoint of the wooden tie beams, the corner details of masonry walls, the door and window openings, the metal fasteners and the earthquake codes are made to be more careful in masonry constructions at the end of the article.