• Title/Summary/Keyword: civil engineering facilities

Search Result 1,070, Processing Time 0.032 seconds

Protective systems for high-technology facilities against microvibration and earthquake

  • Yang, Jann N.;Agrawal, Anil K.
    • Structural Engineering and Mechanics
    • /
    • v.10 no.6
    • /
    • pp.561-575
    • /
    • 2000
  • Microvibration of high technology facilities, such as semiconductor plants and facilities with high precision equipments, due to nearby road and rail traffic has attracted considerable attention recently. In this paper, a preliminary study is conducted for the possible use of various protective systems and their performance for the reduction of microvibration. Simulation results indicate that passive base isolation systems, hybrid base isolation systems, passive floor isolation systems, and hybrid floor isolation systems are quite effective and practical. In particular, the performances of hybrid floor isolation systems are remarkable. Further, passive energy dissipation systems are not effective for the reduction of microvibration. Finally, the protections against both microvibration and earthquake are also investigated and presented.

A site-specific CFD study of passing ship effects on multiple moored ships

  • Chen, Hamn-Ching;Chen, Chia-Rong;Huang, Erick T.
    • Ocean Systems Engineering
    • /
    • v.9 no.1
    • /
    • pp.43-77
    • /
    • 2019
  • A local-analytic-based Navier-Stokes solver has been employed in conjunction with a compound ocean structure motion analysis program for time-domain simulation of passing ship effects induced by multiple post-Panamax class ships in the exact condition of a real waterway. The exact seabed bathymetry was reproduced to the utmost precision attainable using the NOAA geophysical database for Virginia Beach, NOAA nautical charts for Hampton Roads and Norfolk harbor, and echo sounding data for the navigation channel and waterfront facilities. A parametric study consists of 112 simulation cases with various combinations of ship lanes, ship speeds, ship heading (inbound or outbound), channel depths, drift angles, and passing ship coupling (in head-on or overtaking encounters) were carried out for two waterfront facilities at NAVSTA Norfolk and Craney Island Fuel Terminal. The present paper provides detailed parametric study results at both locations to investigate the site-specific passing ship effects on the motion responses of ships moored at nearby piers.

Feasibility of Economic Analysis of Riverfront Facility Based on Mobile Big Data (통신 빅데이터 기반 하천이용시설 사용성능 경제성평가기법개발)

  • Choi, Byeong Jun;Noh, Hee-Ji;Bang, Young Jun;Lee, Seung Oh
    • Journal of Korean Society of Disaster and Security
    • /
    • v.14 no.3
    • /
    • pp.29-38
    • /
    • 2021
  • Riverfront facilities are river space facilities used by citizens for the rest and convenience. Recently, although the importance of efficient maintenance of riverfront facilities is increasing, damaging facilities cases are increasing due to frequent floods. Currently, the inspections and diagnosis of river space facilities are limited to the main flood control facilities. And the standards for the maintenance and management of the riverfront facilities are insufficient. Utilization survey, which is the standard for managing river space facilities, is also inefficient in terms of manpower consumption and economic feasibility. This study uses mobile big data to classify river usage and conducts a survey for usability of river facilities to derive economic evaluation for usage performance. In the future, if economical method system that considers safety, usability, and durability is conducted and demanding analysis for each convenience facility is evaluated, it is expected that the efficient maintenance of riverfront facilities is perfomed better and the use of rivers by citizens will further increase.

Field Investigation of Debris Flow Hazard Area on the Roadside and Evaluating Efficiency of Debris barrier

  • Lee, Jong Hyun;Lee, Jung Yub;Yoon, Sang Won;Oak, Young Suk;Kim, Jae Jeong;Kim, Seung Hyun
    • The Journal of Engineering Geology
    • /
    • v.25 no.4
    • /
    • pp.439-447
    • /
    • 2015
  • In this study, specific sections vulnerable to debris flow damage were selected, and a complete enumeration survey was performed for the sections with debris flow hazards. Based on this, the characteristics of the sections with debris flow hazards and the current status of actions against debris flow were examined, and an efficient installation plan for a debris flow damage prevention method that is required in the future was suggested. The results indicated that in the Route 56 section where the residential density is relatively higher between the two model survey sections, facilities for debris flow damage reduction were insufficient compared to those in the Route 6 section which is a mountain area. It is thought that several sites require urgent preparation of a facility for debris flow damage reduction. In addition, a numerical analysis showed that for debris barriers installed as a debris flow damage prevention method, distributed installation of a number of small-scale barriers facilities within a valley part was more effective than single installation of a large-scale debris barrier at the lower part of a valley.

A Study on Analyzing the Factors Affecting Environmental Loads in the Planning Stage of Korean National Highway Projects

  • Park, Jin-Young;Park, June-Seok;Kim, Myeong-Jin;Kim, Sang-Ryong;Kim, Byung-Soo
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.508-512
    • /
    • 2015
  • Carbon emission calculation guidelines provided by the Korean Ministry of Land, Infrastructure and Transportation (MOLIT) and existing environmental load assessment studies have suggested a method for estimating based on the volume determined after the design development. Therefore they are not being helpful in the decision making of the environmental economics of road facilities in the planning stage in which specific information on construction output volume is lacking. Based on literature analysis of existing studies and consultation from a group of construction environmental professionals, 12 types of property information considered to be related to environmental load were selected from an inventory of information that will be available in the road planning stage. In addition, multiple regression analysis was performed based on the environmental load computed through the life cycle assessment (LCA) of 40 national highway project cases of Korea to deduce five impact factors of environmental load in the road facilities planning stage.

  • PDF

Limit States and Corresponding Seismic Fragility of a Pipe Rack for Maintaining Operation (운전성 유지를 위한 파이프랙의 한계상태와 지진취약도)

  • Kim, Juram; Hong, Kee-Jeung;Hwang, Jin-Ha
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.6
    • /
    • pp.283-291
    • /
    • 2023
  • Unlike other facilities, maintaining processes is essential in industrial facilities. Pipe racks, which support pipes of various diameters, are important structures used in industrial facilities. Since the transport process of pipes directly affects the operation of industrial facilities, a fragility curve should be derived based on considering not only the pipe racks' structural safety but also the pipes' transport process. There are several studies where the fragility curves have been determined based on the structural behavior of pipe racks. However, few studies consider the damage criteria of pipes to ensure the transportation process, such as local buckling and tensile failure with surface defects. In this study, an analysis model of a typical straight pipe rack used in domestic industrial facilities is constructed, and incremental dynamic analysis using nonlinear response history analysis is performed to estimate the parameters of the fragility curve by the maximum likelihood estimation. In addition, the pipe rack's structural behavior and the pipe's damage criteria are considered the limit state for the fragility curve. The limit states considered in this paper to evaluate fragility curves are more reasonable to ensure the transportation process of the pipe systems.

Grid-Based Civil-Engineering Remote Experiment System (그리드 기반의 토목공학 원격실험 시스템)

  • Lee, Jang-Ho;Jeong, Tai-Kyeong
    • The KIPS Transactions:PartA
    • /
    • v.14A no.2
    • /
    • pp.125-132
    • /
    • 2007
  • Recently, in the engineering area, there is an increasing need for researchers at a distance to share the result of the experiment, without having to visit the experiment facilities. Especially in the civil engineering, researchers feel the need for participating in a experiment conducted at a distant location. In addition, it is suggested that high-cost facilities should be used by remote researchers thereby increasing the utilization rate. This paper proposes a remote experiment environment in civil engineering that are being developed in a project called Korea Construction Engineering Development(KOCED), which connects major civil engineering experiment facilities using grid technology, allows researchers to participate in a remote experiment, and has the experiment results shared by remote researchers automatically. Then, based on the suggested environment, we designed a hybrid test facility that involves two physical experiment facility sites and one numerical simulation site that are geographically apart. Then, we implemented its prototype and ran some tests, which showed a possibility of grid-based civil engineering experiment.

Infrastructure Component Assessment Using the Condition Index System: Literature Review and Discussion

  • Amani, Nima;Nasly, M.A.;Samat, Roslida Abd
    • Journal of Construction Engineering and Project Management
    • /
    • v.2 no.1
    • /
    • pp.27-34
    • /
    • 2012
  • Recent requirements in component management of building systems have focused on the requirement for improving methods and metric tools to support component condition assessment and appropriate decisions for infrastructure owned facilities. Although engineers and researchers have focused on developing methodologies for component assessment in recent years but there is not enough attention dedicate to facilities and components that have been constructed. This paper is a literature study of scientific papers within the topic of component condition index system (CCIS) in the period 1976 to 2009. Infrastructure component condition index had existed for some 40 years. The purpose of this paper is to provide an overview of CCIS to identify the suitable method for component condition assessment during its service life. This paper finds that the focus of CCIS, surveyed in several aspects during the 40 years that have been investigated, from technology to measurement and from assessment function to component maintenance as an integrated part of the infrastructure component management. This study offers help to researchers in understanding the selection of an appropriate method for component condition assessment in building and non-building systems.

Damper Configuration for Seismic Performance Improvement of Heavy Facilities with Frictional Sliding Behavior inside Building (마찰 슬라이딩 거동을 보이는 건물 내 중량 설비의 내진성능 향상을 위한 감쇠기 연결 방안)

  • Ok, Seung-Yong;Park, Kwan-Soon;Lee, Jeeho
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.1
    • /
    • pp.53-61
    • /
    • 2020
  • This study proposes a new damper configuration for seismic performance improvement of heavy sliding facilities inside a building. For this purpose, we deal with two connection types of control system, and the parametric study has been performed to investigate their comparative seismic performances according to the variations of the control capacity. In order to simulate the seismic responses of the proposed system, we employed a recently-developed seismic response analysis method that can deal with the two-mass system with nonlinear frictional sliding behavior. The numerical results demonstrate that the typical method of diagonal bracing damper connection can exhibit effective control performance both on structure and the heavy sliding facilities, whereas the structure-facilities connection method does not show any control effect on both responses. On the other hand, the typical method has some limitations that it can adversely cause excessive sliding of the facilities, depending upon the frequency characteristics of structure and earthquake. On the contrary, the structure-facilities connection method is very effective in reducing the sliding displacement of the heavy facilities, even with small amount of control capacity. Thus, the following potential expectations can be inferred from these results: The typical diagonal bracing damper connection method will have some promising benefits in controlling the sliding facilities inside the building as well as the building itself, and the structure-facilities connection method can be a cost-effective way of protecting the internal heavy important facilities inside the structure already designed with sufficient seismic performance.