• Title/Summary/Keyword: circumferential crack

Search Result 162, Processing Time 0.027 seconds

Plastic Limit Loads for Through-Wall Cracked Pipes Using 3-D Finite Element Limit Analyses (3차원 유한요소 한계해석을 이용한 관통균열 배관의 소성한계하중)

  • Huh Nam-Su;Kim Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.5 s.248
    • /
    • pp.568-575
    • /
    • 2006
  • The present paper provides plastic limit load solutions of axial and circumferential through-wall cracked pipes based on detailed three-dimensional (3-D) finite element (FE) limit analysis using elastic-perfectly-plastic behavior. As a loading condition, axial tension, global bending moment, internal pressure, combined tension and bending and combined internal pressure and bending are considered for circumferential through-wall cracked pipes, while only internal pressure is considered for axial through-wall cracked pipes. Especially, more emphasis is given for through-wall cracked pipes subject to combined loading. Comparisons with existing solutions show a large discrepancy in short through-wall crack (both axial and circumferential) for internal pressure. In the case of combined loading, the FE limit analyses results show thickness effect on limit load solutions. Furthermore, the plastic limit load solution for circumferential through-wall cracked pipes under bending is applied to derive plastic $\eta\;and\;{\gamma}$-factor of testing circumferential through-wall cracked pipes to estimate fracture toughness. Being based on detailed 3-D FE limit analysis, the present solutions are believed to be meaningful fur structural integrity assessment of through-wall cracked pipes.

ESTIMATION OF LEAK RATE THROUGH CIRCUMFERENTIAL CRACKS IN PIPES IN NUCLEAR POWER PLANTS

  • PARK, JAI HAK;CHO, YOUNG KI;KIM, SUN HYE;LEE, JIN HO
    • Nuclear Engineering and Technology
    • /
    • v.47 no.3
    • /
    • pp.332-339
    • /
    • 2015
  • The leak before break (LBB) concept is widely used in designing pipe lines in nuclear power plants. According to the concept, the amount of leaking liquid from a pipe should be more than the minimum detectable leak rate of a leak detection system before catastrophic failure occurs. Therefore, accurate estimation of the leak rate is important to evaluate the validity of the LBB concept in pipe line design. In this paper, a program was developed to estimate the leak rate through circumferential cracks in pipes in nuclear power plants using the Henry-Fauske flow model and modified Henry-Fauske flow model. By using the developed program, the leak rate was calculated for a circumferential crack in a sample pipe, and the effect of the flow model on the leak rate was examined. Treating the crack morphology parameters as random variables, the statistical behavior of the leak rate was also examined. As a result, it was found that the crack morphology parameters have a strong effect on the leak rate and the statistical behavior of the leak rate can be simulated using normally distributed crack morphology parameters.

An Experimental Study on the Fracture Behavior of Nuclear Piping System with a Circumferential Crack(I) - Estimation of Crack Behavior in Straight Piping - (원주방향균열이 존재하는 원전 배관계통의 파괴거동에 관한 실험적 연구(I) - 직관부에서의 균열거동 평가 -)

  • Choi, Young-Hwan;Park, Youn-Won;Wilkowski, Gery
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.7 s.166
    • /
    • pp.1182-1195
    • /
    • 1999
  • The purpose of this study is to investigate experimentally the effects of both seismic loading and crack length on the fracture behavior of piping system with a circumferential crack in nuclear power plants. The experiments were performed using both large scale piping system facility and 4 points bending test machine under PWR operating conditions. The difference in the load carrying capacities between cracked piping and non-cracked piping was also investigated using the results from experiments and numerical calculations. The results obtained from the experiments and estimation are as follows : (1) The safety margin under seismic loading is larger than those under quasi static loading or simple cyclic loading. (2) There was no significant effect of crack length on tincture behavior of piping system with both a surface crack and a through-wall crack. (3) The load carrying capacity in cracked piping was reduced by factors of 7 to 46 compared to non-cracked piping.

An Engineering Method for Non-Linear Fracture Mechanics Analysis of Circumferential Through-Wall Cracked Pipes Under Internal Pressure (내압이 작용하는 원주방향 관통균열 배관의 비선형 파괴역학 해석법)

  • Huh, Nam-Su;Kim, Yun-Jae;Kim, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.6
    • /
    • pp.1099-1106
    • /
    • 2002
  • This paper provides engineering J-integral and crack opening displacement (COD) estimation equations for circumferential through-wall cracked pipes under internal pressure and under combined internal pressure and bending. Based on selected 3-D finite element calculations for the circumferential through-wall cracked pipes under internal pressure using the idealized power law materials, the elastic and plastic influence functions for fully plastic J-integral and COD solutions are found as a function of the normalized crack length and the mean radius-to-thickness ratio. These developed GE/EPRI-type solutions are then re-formulated based on the enhanced reference stress method. Such re-formulation not only provides simpler equations for J-integral and COD estimations, but also can be easily extended to combined internal pressure and bending. The proposed equations are compared with elastic-plastic finite element results using actual stress-strain data, which shows overall excellent agreement.

Elastic-Plastic J Estimations for Pipes with Off-Centred Circumferential Through-Wall Cracks (비대칭 원주방향 관통균열 배관의 탄소성 J-적분 계산식)

  • Shim, Do-Jun;Huh, Nam-Su;Kim, Yun-Jae;Kim, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.7
    • /
    • pp.1170-1178
    • /
    • 2003
  • This paper provides approximate J estimates for off-centred, circumferential through-wall cracks in cylinders under bending and under combined tension and bending. The proposed method is based on the reference stress approach, where the dependence of elastic and plastic influence functions of J on the cylinder/crack geometry, the off-centred angle and strain hardening is minimised through the use of a proper normalising load. Based on published limited FE results for off-centred, circumferential through-wall cracks under bending, such normalising load is found, based on which the reference stress based J estimates are proposed for more general cases, such as for a different cylinder geometry and for combined loading. Comparison of the estimated J with extensive FE J results shows overall good agreements for different crack/cylinder geometries and for combined tension and bending, which provides sufficient confidence in the use of the proposed method to fracture mechanics analyses of off-centred circumferential cracks. Furthermore, the proposed method is simple to use, giving significant merits in practice.

Elastic-Plastic Fracture Mechanics Analysis of Off-Centred Circumferential Through-Wall Cracked Pipes (비대칭 원주방향 관통균열 배관의 탄소성 파괴역학해석)

  • Shim, Do-Jun;Huh, Nam-Su;Kim, Yun-Jae;Kim, Young-Jin
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.125-130
    • /
    • 2003
  • This paper provides approximate J estimates for off-centred, circumferential through-wall cracks in cylinders under bending. The proposed method is based on the reference stress approach, where the dependence of elastic and plastic influence functions of J on the cylinder/crack geometry, the off-centred angle and strain hardening is minimised through the use of a proper normalising load. Based on published limited FE results for off-centred, circumferential through-wall cracks under bending, such normalising load is found, based on which the reference stress based J estimates are proposed for more general cases, such as for a different cylinder geometry. Comparison of the estimated J with extensive FE J results shows overall good agreements for different crack/cylinder geometries which provides sufficient confidence in the use of the proposed method to fracture mechanics analyses of off-centred circumferential cracks. Furthermore, the proposed method is simple to use, giving significant merits in practice.

  • PDF

Modification of the ASME Code Z-Factor for Circumferential Surface Crack in Nuclear Ferritic Pipings (원전 페라이트 배관내의 원주방향 표면균열에 대한 ASME Code Z-Factor의 수정)

  • Park, Y. H.;Y. K. Chung;W. Y. Koh;Lee, J. B.
    • Nuclear Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.185-196
    • /
    • 1996
  • The purpose of this paper is to modify the ASME Code Z-Factor, which is used in the evaluation of circumferential surface crack in nuclear ferritic pipings. The ASME Code Z-Factor is a load multiplier to compensate plastic load with elasto-plastic load. The current ASME Code Z-Factor underestimates pipe maximum load. In this study, the original SC. TNP method is modified first because the original SC. TNP method has a problem that the maximum allowable load predicted from the original SC. TNP method is slightly higher than that measured from the experiment. Then the new Z-Factor is developed using the modified SC. TNP method. The desirability of both the modified SC. TNP method and the new Z-Factor is examined using the experimental results for the circumferential surface crack in pipings. The results show that (1) the modified SC. TNP method is good for predicting the circumferential surface crack behavior in pipings, and (2) the Z-Factor obtained from the modified SC. TNP method well predicts the behavior of circumferential surface crack in ferritic pipings.

  • PDF

Crack Growth Life Prediction of Hollow Shaft with Circumferential Through Type Crack by Torsion (원주방향 관통형 균열을 가지는 중공축의 비틀림에 의한 균열성장수명 예측)

  • Yeonhi Kim;Jungsun Park
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.2
    • /
    • pp.1-8
    • /
    • 2023
  • Power transmission shafts in rotary wing aircraft use a hollow shaft to reduce weight. We can apply linear elastic fracture mechanics to predict crack propagation behavior. This paper predicted crack growth life of a hollow shaft with a circumferential through-type crack by finite element analysis. A 2D finite element model was created by applying a torsion and forming elements considering cracks. We defined the initial crack length and performed the finite element analysis by increasing the crack length to derive stress intensity factor at crack tips. We defined the length just prior to the stress intensity factor exceeding the fracture toughness as the crack limit length. We calculated the crack limit length using a handbook and numerically integrated the crack growth rate equation to derive growth life of each crack. The growth life of each crack was compared to verify the proposed finite element analysis method.

Effect of Restraint of Pressure Induced Bending on Crack Opening for Circumferential Crack (원주방향 균열의 균열열림에 미치는 압력유기굽힘의 구속 효과)

  • Kim, Jin-Weon;Park, Chi-Yong
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.849-855
    • /
    • 2000
  • This study evaluated the effect of restraint of pressure induced bending(PIB) on crack mouth opening displacement(CMOD) for circumferential through-wall crack in pipe by using both elastic and elastic-plastic finite element analyses. The analyses results showed the restraint of PIB was decreased crack opening for a given crack length and tensile stress, and the effect was considerable for large crack and short restraint length. Also, the restraint effect on CMOD was independent on the variation in pipe diameter and decreased with increasing pipe thickness, and it depended on not total restraint length but short restraint length for non-symmetrically restrained. Additionally, the effect of restraint of PIB was more significant in the elastic-plastic analysis results compared with in the elastic analysis results.

  • PDF

New Engineering J and COD Estimation Method for Circumferential Through-Wall Cracked Pipes-Combined Tension and Bending Load (원주방향 관통균열이 존재하는 배관의 새로운 J-적분 및 COD 계산식-인장하중과 굽힘모멘트가 동시에 작용하는 경우)

  • Huh, Nam-Su;Kim, Yun-Jae;Kim, Young-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.7
    • /
    • pp.85-90
    • /
    • 2001
  • In order to apply the Leak-Before-Break(LBB)concept to nuclear piping, accurate estimation of J-integral and crack opening displacement(COD) is essential for complex loading, such as combined tension and bending. This paper proposes a new engineering method to estimate J-integral and the COD for circumferential through-wall cracked pipes subject to combined tension and bending loading. The proposed method to estimate the COD is validated against three published pipe test data, generated from a monotonically increasing bending load with a constant internal pressure, which shows excellent agreements.

  • PDF