• Title/Summary/Keyword: circular tube

Search Result 555, Processing Time 0.025 seconds

An Analytical Study on the Strength Behavior of Column-Foundation Connection with High Tension Bolts (고장력 볼트 기둥-기초 연결부의 강도특성에 관한 해석적 연구)

  • Hwang, Dong A;Hwang, Won Sup;Ham, Jun Su;Jeong, Jin Il
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.2
    • /
    • pp.121-128
    • /
    • 2016
  • In order to suggest a reasonable design for the circular concrete filled tube steel column-foundation connection applying high-tension bolts, Overall structural behavior and characteristics according to various variables of column-foundation connection are numerically analyzed using a commercial FE analysis program, ABAQUS. To that goal, finite element analysis is conducted on the basis of the previous study replacing anchor bolts to high-tension bolts, and the analytical results are validated by comparison with experimental results. Also, the various variables(embedded depth and grade of anchor, and height and thickness of rib) involved in behavior of the column-foundation connection are selected through analyzing the current design criteria, and the characteristics of the column-foundation connection are compared and analyzed according to the various variables. In case of the anchor bolts, Applying the high-tension bolts is more advantage and securing the embedded depth beyond 0.5D is recommendable. In case of the rib, a minimum of 0.5D for rib's height and $0.4t_b$ for rib's thickness should be secured to develop the structural performance.

Investigation of Convective Heat Transfer Characteristics of Aqueous SiO2 Nanofluids under Laminar Flow Conditions (층류유동 조건에서 SiO2 나노유체의 대류 열전달 특성에 대한 연구)

  • Park, Hyun-Ah;Park, Ji-Hyun;Jeong, Rag-Gyo;Kang, Seok-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.1-11
    • /
    • 2016
  • The effect of the migration of nanoparticles near the wall of a channel on the convective heat transfer in a laminar flow of $SiO_2$ nanoparticle suspensions (nanofluids) under constant wall heat flux boundary conditions was numerically and experimentally investigated in this study. The dynamic thermal conductivity of the aqueous $SiO_2$ nanofluids was measured using T-type thermocouples attached to the outer surface of a stainless steel circular tube (with a length of 1 m and diameter of 1.75 mm). The nanofluids used in this study were synthesized by dispersing $SiO_2$ spherical nanoparticles with a diameter of 24 nm in de-ionized water (DIW). The enhancement of the thermal conductivity of the nanofluids (e.g., an increase of up to 7.9 %) was demonstrated by comparing the temperature profiles in the flow of the nanofluids with that in the flow of the basefluids (i.e., DIW). However, this trend was not demonstrated in the computational analysis, because the numerical models were based on continuum assumptions and flow features involving nanoparticles in a stable colloidal solution. Thus, to explore the non-continuum effects, such as the modification of the morphology caused by nanoparticle-wall interactions on the heat exchanging surfaces (e.g., the isolated and dispersed precipitation of the nanoparticles), additional experiments were performed using DIW right after the measurements using the nanofluids.

Development of Filler Type Mechanical Splice for High Strength Re-bar (고강도 철근용 충전형 기계적 이음장치 개발 연구)

  • Lee, Seongsoo;Chun, Homin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.686-693
    • /
    • 2018
  • Various types of re-bar splicing methods have been developed and applied to reinforced concrete (RC) structures in the field. According to previous studies, the coupler splice is relatively superior to the lap splice in terms of cost efficiency when the diameter or strength of the re-bar is larger or higher. This study was performed to develop a filler type mechanical splice for a high-strength re-bar (SD600) in reinforced concrete structures. The deformed re-bars were inserted into a circular steel tube coupler and high-strength epoxy filler was then injected into the coupler. The splice system was completed by hardened filler in a coupler. The epoxy filler was used as the manufactured production epoxy to conduct experiments of filler type mechanical splice specimens, and to observe the failure loads and failure aspects of the specimens. For this goal, the experiment of one-way tensile test was conducted for the epoxy filler type mechanical splices specimens according to the compressive strength of epoxy, length of coupler, and diameter of re-bar. The shape of failure of the re-bar coupler splice showed that the re-bars were pulled between the lugs of the re-bars as a result of the shear fracture of the hardened epoxy. The actual failure load of the experiment specimen was approximately 2 times higher than the expected failure load of the epoxy filler, which greatly improves the failure load of the hardening epoxy filler due to the restraint of the steel coupler.

Measurements of Void Concentration Parameters in the Drift-Flux Model (상대유량 모델내의 기포분포계수 측정에 관한 연구)

  • Yun, B.J.;Park, G.C.;Chung, C.H.
    • Nuclear Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.91-101
    • /
    • 1993
  • To predict accurately the thermal hydraulic behavior of light water reactors during normal or abnormal operation, the accurate estimation of the void distribution is required. Up to date, many techniques for predicting void fraction of two-phase flow systems have been suggested. Among these techniques, the drift-flux model is widely used because of its exact calculation ability and simplicity. However, to get more accurate prediction of void fraction using drift-flux model, slip and flow regime effects must be considered more properly In the drift-flux method, these two effects are accounted for by two drift-flux parameters ; $C_{o}$ and (equation omitted). At earlier stage, $C_{o}$ is measured in a circular tube. In this study, $C_{o}$ is experimentally determined by measuring local void fraction and vapor velocity distribution in a rectangular subchannel having 4 heating rods which simulates nuclear subchannels. The measurements are peformed with two-electrical conductivity probes which are known to be adequate for measuring local parameters. The experiments are performed at low flow rate and the system pressure less than 3 atmo spheric pressure. In this experiment, (equation omitted), is not measured, but quoted from well-known empirical correlation to formulate $C_{o}$. Finally, $C_{o}$ is expressed as a function of channel averaged void fraction. fraction.

  • PDF

Strength and Deformation Capacities of Short Concrete Columns with Circular Section Confined by GFRP (GFRP로 구속된 원형단면 콘크리트 단주의 강도 및 변형 능력)

  • Cho, Soon-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.1
    • /
    • pp.121-130
    • /
    • 2007
  • To investigate the enhancement in strength and deformation capacities of concrete confined by FRP composites, tests under axial loads were carried out on three groups of thirty six short columns in circular section with diverse GFRP confining reinforcement. The major test variables considered include fiber content or orientation, wrap or tube type by varying the end loading condition, and continuous or discontinuous confinement depending on the presence of vortical spices between its two halves. The circumferential FRP strains at failure for different types of confinements were also investigated with emphasis. Various analytical models capable of predicting the ultimate strength and strain of the confined concrete were examined by comparing to observed results. Tests results showed that FRP wraps or tubes provide the substantial increase in strength and deformation, while partial wraps comprising the vertical discontinuities fail in an explosive manner with less increase in strength, particularly in deformation. A bilinear stress-strain response was observed throughout all tests with some variations of strain hardening. The failure hoop strains measured on the FRP surface were less than those obtained from the tensile coupons in all tests with a high degree of variation. In overall, existing predictive equations overestimated ultimate strengths and strains observed in present tests, with a much larger scatter related to the latter. For more accuracy, two simple design- oriented equations correlated with present tests are proposed. The strength equation was derived using the Mohr-Coulomb failure criterion, whereas the strain equation was based on entirely fitting of test data including the unconfined concrete strength as one of governing factors.