• Title/Summary/Keyword: circular tube

Search Result 555, Processing Time 0.028 seconds

Multimode Boundary-Layer Transition on an Airfoil Influenced by Periodically Passing Wake under the Free-stream Turbulence (자유유동 난류 하의 주기적 통과 후류의 영향을 받는 익형 위 경계층 천이)

  • Park Tae-Choon;Jeon Woo-Pyung;Kang Shin-Hyoung
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.687-690
    • /
    • 2002
  • Multimode boundary-layer transition on a NACA0012 airfoil is experimentally investigated under periodically passing wakes and the moderate level of free-stream turbulence. The periodic wakes are generated by rotating circular cylinders clockwise or counterclockwise around the airfoil. The free-stream turbulence is produced by a grid upstream of the rotating cylinder, and its intensity(Tu) at the leading edge of the airfoil is $0.5\;or\;3.5\;{\%}$. The Reynolds number ($Re_c$) based on chord length (C) of the alrfoil is $2.0{\times}10^5$, and Strouhal number ($St_c$) of the passing wake is about 0.7. Time- and phase-averaged streamwise mean velocities and turbulence fluctuations are measured with a single hot-wire probe, and especially, the corresponding wall skin friction is evaluated using a computational Preston tube method. The wake-passing orientation changes pressure distribution on the airfoil in a different manner irrespective of the free-stream turbulence. Regardless of free-stream turbulence level, turbulent patches for the receding wakes propagate more rapidly than those for the approaching wake because adverse pressure gradient becomes larger. The patch under the high free-stream turbulence ($Tu=3.5{\%}$) grows more greatly in laminar-like regions compared with that under the low background turbulence ($Tu=0.5{\%}$) in laminar regions. The former, however, does not greatly change the original turbulence level in the very near-wall region while the latter does it. At further downstream, the former interacts vigorously with high environmental turbulence inside the pre-existing transitional boundary layer and gradually lose his identification, whereas the latter keep growing in the laminar boundary layer. The calmed region is more clearly observed under the lower free-stream turbulence level and for the receding wakes. The calmed region delays the breakdown further downstream and stabilizes more the boundary layer.

  • PDF

Commissioning result of the KSTAR in-vessel cryo-pump

  • Chang, Y.B.;Lee, H.J.;Park, Y.M.;Lee, Y.J.;Kwag, S.W.;Song, N.H.;Park, D.S.;Joo, J.J.;Moon, K.M.;Kim, N.W.;Yang, H.L.;Oh, Y.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.4
    • /
    • pp.53-58
    • /
    • 2013
  • KSTAR in-vessel cryo-pump has been installed in the vacuum vessel top and bottom side with up-down symmetry for the better plasma density control in the D-shape H-mode. The cryogenic helium lines of the in-vessel cryo-pump are located at the vertical positions from the vacuum vessel torus center 2,000 mm. The inductive electrical potential has been optimized to reduce risk of electrical breakdown during plasma disruption. In-vessel cryo-pump consists of three parts of coaxial circular shape components; cryo-panel, thermal shield and particle shield. The cryo-panel is cooled down to below 4.5 K. The cryo-panel and thermal shields were made by Inconel 625 tube for higher mechanical strength. The thermal shields and their cooling tubes were annealed in air environment to improve the thermal radiation emissivity on the surface. Surface of cryo-panel was electro-polished to minimize the thermal radiation heat load. The in-vessel cryo-pump was pre-assembled on a test bed in 180 degree segment base. The leak test was carried out after the thermal shock between room temperature to $LN_2$ one before installing them into vacuum vessel. Two segments were welded together in the vacuum vessel and final leak test was performed after the thermal shock. Commissioning of the in-vessel cryo-pump was carried out using a temporary liquid helium supply system.

Experimental Study on Heat Transfer Characteristics of Ice Slurry at Direct Transportation Loop (직접 수송 루프에서 아이스슬러리의 열전달 특성에 관한 실험적 연구)

  • Lee, Dong-Won;Kim, Jeong-Bae
    • Journal of Energy Engineering
    • /
    • v.19 no.4
    • /
    • pp.234-239
    • /
    • 2010
  • Heat transfer characteristics were experimentally investigated for ice slurry which was made from 6.5% ethylene glycol-water solution flowing in the circular pipe. The test section was made of a copper tube of 13.84 mm inner diameter and 1,500 mm length. The ice slurry was heated by passing hot water through an annulus surrounding the test section. The ice packing factor(IPF) and the mass flux of the experiments were varied from 0 to 25% and from 1,000 to 3,000 kg/$m^2s$ respectively at a fixed hot water temperature and flow rate. The measured heat transfer rates increase with the mass flow rate and IPF; however the effect of IPF appears to be minor at high mass flow rate. At the low mass flow rate condition, a sharp increases in the heat transfer coefficient was observed when the IPF was above 15 ~ 20%. And finally the measured heat transfer coefficients were compared with those calculated from the correlations.

Wake-Induced Boundary Layer Transition on an Airfoil at Moderate Free-Stream Turbulence (자유유동 난류강도에 따른 익형 위 후류유도 경계층 천이의 거동)

  • Park, Tae-Choon;Kang, Shin-Hyoung;Jeon, Woo-Pyung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.9 s.252
    • /
    • pp.921-928
    • /
    • 2006
  • Wake-induced boundary-layer transition on a NACA0012 airfoil with zero angle of attack is experimentally investigated in periodically passing wakes under the moderate level of free-stream turbulence. The periodic wakes are generated by rotating circular cylinders clockwise or counterclockwise around the airfoil. The free-stream turbulence is produced by a grid upstream of the rotating cylinder, and its intensities $(Tu_{\infty})$ at the leading edge of the airfoil are 0.5 and 3.5%, respectively. The Reynolds number (Rec) based on chord length (C) of the airfoil is $2.0{\times}10^5$, and Strouhal number (Stc) of the passing wake is about 1.4. Time- and phase-averaged streamwise mean velocities and turbulence fluctuations are measured with a single hot-wire probe, and especially, the corresponding wall skin friction is evaluated using a computational Preston tube method. The patch under the high free-stream turbulence $(Tu_{\infty}=3.5%)$ grows more greatly in laminar-like regions compared with that under the low turbulence $(Tu_{\infty}=0.5%)$ in laminar regions. The former, however, does not greatly change the turbulence level in very near-wall region while the latter does it. At further downstream, the former interacts vigorously with high environmental turbulence inside the pre-existing transitional boundary layer and gradually loses its identification, whereas the latter keeps growing in the laminar boundary layer. The calmed region is more clearly observed under the lower free-stream turbulence level and with the receding wakes.

Study on Critical Impact Point for a SB2 Class Flexible Barrier (SB2등급 연성베리어의 충돌지점(CIP)에 대한 연구)

  • Heo, Yeon Hee;Kim, Yong Guk;Ko, Man Gi;Kim, Kee Dong
    • International Journal of Highway Engineering
    • /
    • v.15 no.4
    • /
    • pp.127-133
    • /
    • 2013
  • PURPOSES : The impact performance of flexible barrier system such as structural response, vehicular motion and occupant safety vary depending on the impact point. Thus, to properly evaluate the performance of a flexible barrier system, impact should be made to a point which will lead to the worst possible results. This point is called the Critical Impact Point (CIP). This paper presents the way to determine the CIP for a SB2 class flexible barrier system which is consisted of Thrie-Beam rail and circular hollow tube post of 2m span. METHODS: Barrier VII simulations were made for impact points; Case 1 at a post, Case 2 at 1/3 span downstream from a post, Case 3 at middle of the span, Case 4 at 2/3 span downstream from a post. For the structural performance (deflections), impact simulation of 8000kg-65km/h-15degree was used, and for vehicle motion and occupant safety, simulation of 1300kg-80km/h-20degree impact was made and analysed. RESULTS: Case 1 gave the largest dynamic deflection of 75.72cm and also gave the largest snag value of 44.3cm. Occupant safety and exit angle of the vehicle after the impact were not sensitive to the impact point and were all below the allowable limit. CONCLUSIONS : For the SB2 class flexible barrier system's CIP can be regarded as a post which is sufficiently away from the end of Length of Need in order to avoid the end-effect of the barrier system. It can be more economic in the long run because the normal concrete pavement material is likely to cost more due to higher probability of maintenance and repair and higher social cost due to traffic accident, etc.

A Study on the Effect of Automotive Engine Performance by Using Carbon Nano Colloid Cooling Water (탄소나노콜로이드 냉각수를 사용하여 자동차 엔진성능의 향상에 관한 연구)

  • Yi, Chung-Seob;Lee, Byung-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.5
    • /
    • pp.134-142
    • /
    • 2011
  • Although combustion is essential in most energy generation processes, it is one of the major causes of air pollution. Exhaust pipes with circular fin were designed to study the effect of cooling the recirculated exhaust gases (EGR) of Diesel engines on the chemical composition of the exhaust gases and the reduction in the percentages of pollutant emissions. The gases examined in this study were oxides of nitrogen (NOx), carbon dioxide ($CO_2$) and carbon monoxide (CO). In addition, $O_2$ concentration in the exhaust was measured. The designs adopted in this study were about exhaust pipes with solid and hollow fins around them direct surface force measurement in water using a nano size colloidal probe technique. The direct force measurement between colloidal surfaces has been an essential topic in both theories and applications of surface chemistry. As particle size is decreased from micron size down to true Carbon nano Colloid size (<10 nm), surface forces are increasingly important. Nano particles at close proximity or high solids loading are expected to show a different behavior than what can be estimated from continuum and mean field theories. The current tools for directly measuring interaction forces such as a surface force apparatus or atomic force microscopy (AFM) are limited to particles much larger than nano size. This paper use Water and CNC fluid at normal cooling system of EGR. Experimental result showed all good agreement at Re=$2.54{\times}10^4$ by free convection and Re=$3.36{\times}10^4$ by forced air furnace.

The detection of cavitation in hydraulic machines by use of ultrasonic signal analysis

  • Gruber, P.;Farhat, M.;Odermatt, P.;Etterlin, M.;Lerch, T.;Frei, M.
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.4
    • /
    • pp.264-273
    • /
    • 2015
  • This presentation describes an experimental approach for the detection of cavitation in hydraulic machines by use of ultrasonic signal analysis. Instead of using the high frequency pulses (typically 1MHz) only for transit time measurement different other signal characteristics are extracted from the individual signals and its correlation function with reference signals in order to gain knowledge of the water conditions. As the pulse repetition rate is high (typically 100Hz), statistical parameters can be extracted of the signals. The idea is to find patterns in the parameters by a classifier that can distinguish between the different water states. This classification scheme has been applied to different cavitation sections: a sphere in a water flow in circular tube at the HSLU in Lucerne, a NACA profile in a cavitation tunnel and two Francis model test turbines all at LMH in Lausanne. From the signal raw data several statistical parameters in the time and frequency domain as well as from the correlation function with reference signals have been determined. As classifiers two methods were used: neural feed forward networks and decision trees. For both classification methods realizations with lowest complexity as possible are of special interest. It is shown that two to three signal characteristics, two from the signal itself and one from the correlation function are in many cases sufficient for the detection capability. The final goal is to combine these results with operating point, vibration, acoustic emission and dynamic pressure information such that a distinction between dangerous and not dangerous cavitation is possible.

Development of RF Ion Source for Neutral Beam Injector in Fusion Devices

  • Jang, Du-Hui;Park, Min;Kim, Seon-Ho;Jeong, Seung-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.550-551
    • /
    • 2013
  • Large-area RF-driven ion source is being developed at Germany for the heating and current drive of ITER plasmas. Negative hydrogen (deuterium) ion sources are major components of neutral beam injection systems in future large-scale fusion experiments such as ITER and DEMO. RF ion sources for the production of positive hydrogen ions have been successfully developed at IPP (Max-Planck- Institute for Plasma Physics, Garching) for ASDEX-U and W7-AS neutral beam injection (NBI) systems. In recent, the first NBI system (NBI-1) has been developed successfully for the KSTAR. The first and second long-pulse ion sources (LPIS-1 and LPIS-2) of NBI-1 system consist of a magnetic bucket plasma generator with multi-pole cusp fields, filament heating structure, and a set of tetrode accelerators with circular apertures. There is a development plan of large-area RF ion source at KAERI to extract the positive ions, which can be used for the second NBI (NBI-2) system of KSTAR, and to extract the negative ions for future fusion devices such as ITER and K-DEMO. The large-area RF ion source consists of a driver region, including a helical antenna (6-turn copper tube with an outer diameter of 6 mm) and a discharge chamber (ceramic and/or quartz tubes with an inner diameter of 200 mm, a height of 150 mm, and a thickness of 8 mm), and an expansion region (magnetic bucket of prototype LPIS in the KAERI). RF power can be transferred up to 10 kW with a fixed frequency of 2 MHz through a matching circuit (auto- and manual-matching apparatus). Argon gas is commonly injected to the initial ignition of RF plasma discharge, and then hydrogen gas instead of argon gas is finally injected for the RF plasma sustainment. The uniformities of plasma density and electron temperature at the lowest area of expansion region (a distance of 300 mm from the driver region) are measured by using two electrostatic probes in the directions of short- and long-dimension of expansion region.

  • PDF

Study on strength of reinforced concrete filled circular steel tubular columns

  • Hua, Wei;Wang, Hai-Jun;Hasegawa, Akira;Shioi, Yukitake;Iwasaki, Shoji;Miyamoto, Yutaka
    • Structural Engineering and Mechanics
    • /
    • v.19 no.6
    • /
    • pp.653-677
    • /
    • 2005
  • Concrete filled steel tubular columns (CFT) are widely used in civil engineering works, especially in large scale of works because of high strength, deformation, toughness and so on. On the other hand, as a kind of strengthening measure for seriously damaged reinforced concrete piers of viaduct in Hansin-Awaji earthquake of Japan in 1995, reinforced concrete piers were wrapped with steel plate. Then, a new kind of structure appeared, that is, reinforced concrete filled steel tubular column (RCFT). In this paper, compression test and bending-shearing test on RCFT are carried out. The main parameters of experiments are (1) strength of concrete, (2) steel tube with or without rib, (3) width-thickness ratio and (4) arrangement of reinforcing bars. According to the experimental results, the effect of parameters on mechanical characteristics of RCFT is analyzed clearly. At the same time, strength evaluation formula for RCFT column is proposed and tested by experimental results and existed recommendations (AIJ 1997). The strength calculated by the proposal formula is in good agreement with test result. As a result, the proposed evaluation formula can evaluate the strength of RCFT column properly.

Crystalline Style Morphology in Three Species of Bivalve (Tegillarca granosa, Mytilus galloprovincialis and Saxidomus purpuratus) (이매패류 3종 (꼬막, 지중해담치, 개조개) 의 당면체 형태)

  • Ju, Sun-Mi;Park, Ji-Seon;Lee, Jung-Sick
    • The Korean Journal of Malacology
    • /
    • v.26 no.2
    • /
    • pp.165-170
    • /
    • 2010
  • The location of the style sac and morphology of the crystalline style were described morphologically in three bivalve species (Tegillarca granosa, Mytilus galloprovincialis and Saxidomus purpuratus) which inhabited in different area. The style sac of them was connected to the posterior stomach. There was the crystalline style in the style sac. The crystalline style of three species was long circular cone of translucent gelatin form, which was hard and elastic. There was a red-yellow and spiral filament inside the crystalline style of Tegillarca granosa and Mytilus galloprovincialis. A white and long tube was located from basal portion to the end of crystalline style in Saxidomus purpuratus. RLC (relative length of crystalline style) of Tegillarca granosa, Mytilus galloprovincialis and Saxidomus purpuratus was 47.69, 48.97, 64.20% and RWC (relative weight of crystalline style) was 0.54, 0.54, 0.39%, respectively.