• Title/Summary/Keyword: circular environment

Search Result 316, Processing Time 0.027 seconds

Aerodynamics of a cylinder in the wake of a V-shaped object

  • Kim, Sangil;Alam, Md. Mahbub;Russel, Mohammad
    • Wind and Structures
    • /
    • v.23 no.2
    • /
    • pp.143-155
    • /
    • 2016
  • The interaction between two different shaped structures is very important to be understood. Fluid-structure interactions and aerodynamics of a circular cylinder in the wake of a V-shaped cylinder are examined experimentally, including forces, shedding frequencies, lock-in process, etc., with the V-shaped cylinder width d varying from d/D = 0.6 to 2, where D is the circular cylinder diameter. While the streamwise separation between the circular cylinder and V-shaped cylinder was 10D fixed, the transverse distance T between them was varied from T/D = 0 to 1.5. While fluid force and shedding frequency of the circular cylinder were measured using a load cell installed in the circular cylinder, measurement of shedding frequency of the V-shaped cylinder was done by a hotwire. The major findings are: (i) a larger d begets a larger velocity deficit in the wake; (ii) with increase in d/D, the lock-in between the shedding from the two cylinders is centered at d/D = 1.1, occurring at $d/D{\approx}0.95-1.35$ depending on T/D; (iii) at a given T/D, when d/D is increased, the fluctuating lift grows and reaches a maximum before decaying; the d/D corresponding to the maximum fluctuating lift is dependent on T/D, and the relationship between them is linear, expressed as $d/D=1.2+{\frac{1}{e}}T/D$; that is, a larger d/D corresponds to a greater T/D for the maximum fluctuating lift.

A Study on Frequency Characteristics of Wake Flow a Circular Cylinder with Control Cylinder (제어봉이 부착된 원관 후류의 주파수특성에 관한 연구)

  • Choe, Sang-Bom;Han, Won-Hui;Cho, Dae-Hwan;Gim, Ok-Sok
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2007.11a
    • /
    • pp.177-183
    • /
    • 2007
  • Flow characteristics of the cylinder wake controlled with a small control cylinder were experimentally investigated by the PN (Particle Image Velocimetry) technique. Flow visualization of the flow around a circular cylinder was conducted in the Circulating Water Channel. The control cylinder having diameter of d=5mm, 10mm and 20mm was installed behind a circular cylinder of D=50mm. And the Reynolds number were $Re=4.9{\times}10^3,\;Re=9.9{times}10^3$ and $Re=1.9{\times}10^4$. In this study, the frequency characteristics of the controlled wake were analyzed by using spectral analysis of the measured wake velocity signals. As a result, the controlled wake had smaller vortex shedding frequency than that of circular cylinder wake by the effect of the control cylinder. Governing parameters of the flow control were d/D, and Reynolds number and they largely influenced the frequency characteristics of the cylinder wake. And vortex shedding frequency appeared most lowly at d=0.2D

  • PDF

Post-Buckling Behaviour and Buckling Strength of the Circular Cylinder Under Axial Compression (압축하중을 받는 원통실린더의 후좌굴 거동 및 좌굴강도)

  • Koo, Bon Guk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.2
    • /
    • pp.260-266
    • /
    • 2018
  • Cylindrical shells are often used in the construction of ship and land-based structures such as deck plating with a camber, side shell plating for fore and aft part pipes, as well as storage tanks. It has been believed that such curved shells can be modeled fundamentally as a part of the cylinder under axial compression. From the estimations made based on cylindrical models, it is known that in general, curvature increases the buckling strength of a curved shell when subjected to axial compression, and the same curvature is also expected to increase the overall strength. A series of elastic large deflection analyses were conducted in order to clarify the fundamentals observed in the buckling and post-buckling behaviour of circular cylinders under axial compression. In the present paper, an FE-series analysis has been performed based on the elastic large deflection behaviour, and the effect of parameters has been clarified. The ultimate strength behavior of the circular cylinder was found to be significantly influenced by both the initial deflection and the FE-modeling method.

Data Compression Method for Reducing Sensor Data Loss and Error in Wireless Sensor Networks (무선센서네트워크에서 센서 데이터 손실과 오류 감소를 위한 데이터 압축 방법)

  • Shin, DongHyun;Kim, Changhwa
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.2
    • /
    • pp.360-374
    • /
    • 2016
  • Since WSNs (Wireless Sensor Networks) applied to their application areas such as smart home, smart factory, environment monitoring, etc., depend on sensor data, the sensor data is the most important among WSN components. The resources of each node consisting of WSN are extremely limited in energy, hardware and so on. Due to these limitation, communication failure probabilities become much higher and the communication failure causes data loss to occur. For this reason, this paper proposes 2MC (Maximum/Minimum Compression) that is a method to compress sensor data by selecting circular queue-based maximum/minimum sensor data values. Our proposed method reduces sensor data losses and value errors when they are recovered. Experimental results of 2MC method show the maximum/minimum 35% reduction efficiency in average sensor data accumulation error rate after the 3 times compression, comparing with CQP (Circular Queue Compression based on Period) after the compressed data recovering.

Performance Evaluation and Theoretical Model for the Polarization Diversity using Circularly Polarized Waves in N-LOS Radio Environments (비가시거리 전파환경에서 원형편파를 이용한 편파다이버시티의 이론적 모델 및 성능평가)

  • 이주현;하덕호;박정훈
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.2
    • /
    • pp.133-138
    • /
    • 2003
  • In this paper, we analyzed a two-branch polarization diversity at a mobile station in NLOS environment when a base station transmits a circularly polarized wave. In order to calculate the correlation coefficient considering the XPD(cross polarization discrimination) between the received signals for the two diversity branches, a simple theoretical model of circular polarization diversity is adopted. From the analysis results, it can be seen that the XPD of circularly polarized wave is less than vertically polarized wave about 6~7 dB in measurement results. And also, it is clearly seen that the correlation coefficient of circular polarization diversity evaluated by the XPD is less than that of vertical polarization diversity.

Design of Drag-type Vertical Axis Miniature Wind Turbine Using Arc Shaped Blade (아크형 날개를 이용한 항력식 수직축 소형 풍력 터빈 설계)

  • Kim, Dong-Keon;Kim, Moon-Kyung;Cha, Duk-Keun;Yoon, Soon-Hyun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.9 no.2 s.35
    • /
    • pp.7-12
    • /
    • 2006
  • This study is to develop a system of electric power generation utilizing the wind resources available in the domestic wind environment. We tested drag-type vortical wind turbine models, which have two different types of blades: a flat plate and circular arc shape. Through a performance test, conditions of maximum rotational speed were found by measuring the rpm of wind turbine. The rotational speed was measured by a tachometer in a wind tunnel and the tunnel wind speed was by using a pilot-static tube and a micro manometer. The performance test for a prototype was accomplished by calculating power, power coefficient, torque coefficient from the measurement of torque and rpm by a dynamometer controller From the measurements for miniature turbine models with two different blades, the circular arc shape was found to Produce a maximum rotational speed for the same wind velocity condition. Based on this result, the prototype with the circular arc blade was made and tested. We found that it produces 500W at the wind velocity of 10.8 m/s and the power coefficient was 20%.

Effects of Wave Dissipation with Circular Cylinders (원형파일군에 의한 파랑제어 특성)

  • Lee, Seong-Dae;Kim, Seong-Deuk
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.27-33
    • /
    • 2008
  • One of the central problems in astudy of the coastal surface wave environment is predicting the transformation of waves as they propagate toward the shore. The transformation is mainly due to the existence of obstacles, such as breakwaters and vertical cylinders. In general, the types of wave transformation can be classified as follows: wave diffraction, reflection, transmission, scattering, radiation, et al. This research dealtwith wave transmission and dissipation problems for two dimensional irregular waves and vertical circular cylinders. Using the unsteady mild slope equation, a numerical model was developed to calculate the reflection and transmission of regular waves from a multiple-row circular breakwater and vertical cylinders. In addition, hydraulic model experiments were conducted with different values for the properties between tire piles and the opening ratio (distances) between the rows of the breakwater. It was found that the transmission coefficients decreased with a decrease in the opening ratio and an increase in the rows of vertical cylinders. A comparison between the results of hydraulic and numerical experiments showed reasonable agreement.

A Study on the Design of Polarization Selective Antenna for UHF RFID System (UHF RFID 시스템을 위한 Polarization Selective 안테나 설계 연구)

  • Lee, Sa-Won;Song, Woo-Yong
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.2
    • /
    • pp.170-175
    • /
    • 2010
  • This article proposed polarization selective antenna for UHF RFID system. The proposed antenna is consist of microstrip patch antenna with dual feeding and two SPDT switches and a SP4T switch and 3dB hybrid coupler. Through control of voltage of switches, the proposed reader antenna can select horizontally linear polarization, vertically linear polarization, left-hand circular polarization (LHCP) and right hand circular polarization (RHCP). The proposed reader antenna satisfied 2:1 VSWR at 902MHz ~ 928MHz. and 3dB under AR(axial ratio). And it can select appropriative polarization with user environment and tag polarization. So it minimize PLF and increased reading distance.

Cell Searching and DoA Estimation Methods for a Mobile Relay Station with a Uniform Circular Array (원형 등간격 어레이를 갖는 이동 릴레이의 셀 탐색과 입사각 추정기법)

  • Ko, Yo-Han;Kim, Yeong-Jun;Yoo, Hyun-Il;Cho, Yong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.9A
    • /
    • pp.664-672
    • /
    • 2009
  • In this paper, joint methods of cell searching and Direction-of-Arrival (DoA) estimation for a mobile relay station with a uniform circular array are proposed. The proposed joint estimation method for the mobile relay station is robust even when there exist symbol timing offsets between the signals received from adjacent base stations. Also, the proposed joint estimation method can reduce computational complexity and processing time, compared with the case where cell searching and DoA estimation are performed separately. Performances of the proposed method are evaluated by computer simulation under Mobile WiMAX environment.

Experimental Study on High Frequency Vibration Transfer Characteristic of Underwater Cylindrical Shell (수중 원통형 쉘 구조물의 고주파 진동 전달특성에 대한 실험적 연구)

  • Jung, Hyung-Gi;Min, Cheon-Hong;Park, Han-Il
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.5
    • /
    • pp.58-63
    • /
    • 2011
  • Underwater vehicles such as UUVs (Unmanned Underwater Vehicles) and ROVs (Remotely Operated Vehicles) use sonar to detect their underwater environment or other underwater vehicles. The underwater vehicles designed recently have an electrical power system with high rotational speed. This system can generate high frequency vibrations above 10 kHz, and these vibrations can cause bad (negative) effects on the performance of the sonar. In many previous investigations, numerical analyses have been used for high frequency vibration problems. In this study, an experimental analysis was carried out, and a circular cylindrical shell was considered as the hull structure of an underwater vehicle. Frequency transfer functions for the circular cylindrical shell were identified using an experimental vibration analysis in the air and in a fully-submerged condition. We compare the frequency transfer functions in the air and water to obtain hydro-elastic effects. It is found that the dynamic characteristics of the circular cylindrical shell are changed by varying the response position.