• Title/Summary/Keyword: circular environment

Search Result 313, Processing Time 0.024 seconds

Improvement of a High-volume Aerosol Particle Sampler for Collecting Submicron Particles through the Combined Use of a Cyclone with a Smoothened Inner Wall and a Circular Cone Attachment

  • Okuda, Tomoaki;Isobe, Ryoma
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.2
    • /
    • pp.131-137
    • /
    • 2017
  • A cyclone is an effective tool to facilitate the collection of aerosol particles without using filters, and in cell exposure studies is able to collect a sufficient amount of aerosol particles to evaluate their adverse health effect. In this study, we examined two different methods to improve the aerosol particle collection efficiency of a cyclone. The individual and combined effects of reducing the surface roughness of the inner wall of the cyclone and of using a circular cone attachment were tested. The collection efficiency of particles of diameter $0.2{\mu}m$ was improved by approximately 10% when using a cyclone with a smoothened inner wall (average roughness $Ra=0.08{\mu}m$) compared with the original cyclone ($Ra=5.1{\mu}m$). A circular cone attachment placed between the bottom section of the cyclone and the top section of a collection bottle, resulted in improved collection of smaller particles without the attachment. The 50% cutoff diameter of the modified cyclone (combined use of smoothened inner wall and attachment) was $0.23{\mu}m$ compared to $0.28{\mu}m$ in the original model. The combined use of these two techniques resulted in improved collection efficiency of aerosol particles.

Investigation of the model scale and particle size effects on the point load index and tensile strength of concrete using particle flow code

  • Haeri, Hadi;Sarfarazi, Vahab;Zhu, Zheming;Hedayat, Ahmadreza;Marji, Mohammad Fatehi
    • Structural Engineering and Mechanics
    • /
    • v.66 no.4
    • /
    • pp.445-452
    • /
    • 2018
  • In this paper the effects of particle size and model scale of concrete have been investigated on point load index, tensile strength, and the failure processes using a PFC2D numerical modeling study. Circular and semi-circular specimens of concrete were numerically modeled using the same particle size, 0.27 mm, but with different model diameters of 75 mm, 54 mm, 25 mm, and 12.5 mm. In addition, circular and semi-circular models with the diameter of 27 mm and particle sizes of 0.27 mm, 0.47 mm, 0.67 mm, 0.87 mm, 1.07 mm, and 1.27 mm were simulated to determine whether they can match the experimental observations from point load and Brazilian tests. The numerical modeling results show that the failure patterns are influenced by the model scale and particle size, as expected. Both Is(50) and Brazilian tensile strength values increased as the model diameter and particle sizes increased. The ratio of Brazilian tensile strength to Is(50) showed a reduction as the particle size increased but did not change with the increase in the model scale.

Behavior of circular thin-walled steel tube confined concrete stub columns

  • Ding, Fa-xing;Tan, Liu;Liu, Xue-mei;Wang, Liping
    • Steel and Composite Structures
    • /
    • v.23 no.2
    • /
    • pp.229-238
    • /
    • 2017
  • This paper presents a combined numerical and theoretical study on the composite action between steel and concrete of circular steel tube confined concrete (STCC) stub columns under axial compressive loading with a full theoretical elasto-plastic model and finite element (FE) model in comparison with experimental results. Based on continuum mechanics, the elasto-plastic model for STCC stub columns was established and the analysis was realized by a FORTRAN program and the three dimensional FE model was developed using ABAQUS. The steel ratio of the circular STCC columns were defined in range of 0.5% to 2% to analyze the composite action between steel tube and concrete, and make a further study on the advantages of the circular STCC columns. By comparing the results using the elasto-plastic methods with the parametric analysis result of FE model, the appropriate friction coefficient between the steel tube and core concrete was defined as 0.4 to 0.6. Based on ultimate balance theory, the formula of ultimate load capacity applying to the circular STCC stub columns was developed.

Strategic Characteristics of Technologization for Circular Fashion System (순환 패션 시스템을 위한 테크놀로지제이션의 전략적 특성)

  • Mikyung Kim;Eunhyuk Yim
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.46 no.6
    • /
    • pp.1039-1057
    • /
    • 2022
  • The fashion system has been criticized for relying on a linear economy to reduce short-term costs and increase profits. Meanwhile, the circular economy strives to expand the value chain through a closed loop for companies, society, and the environment by separating consumption from resources. This study aims to elucidate the strategic characteristics of the technological measures that fashion companies and brands are trying to innovate into a sustainable fashion system on the basis of the circular economy concept. Thus, we conducted case studies by dividing the value chain of the fashion system into design, production, and consumption to identify the technological development of the circular fashion system from a technologization perspective that incorporates technological values. First, design appeared to strengthen emotional durability, design and process with circulation in mind, and fashion product digitalization. Second, production manifested itself as material development for the new fiber economy, improvement of non-environmental processes, and customization of demand-driven, responsive production. Third, consumption was the spread of the environmental consumption culture through the sharing economy platform, the realization of a virtual wearing experience to prevent rapid disposal, and the provision of information on sustainable consumption.

The Circular Polarization Diversity Effect Considering XPD Factor in an Indoor Radio Propagation Environment

  • Ahn Je-Sung;Ha Deock-Ho;Cho Pyung-Dong
    • Journal of electromagnetic engineering and science
    • /
    • v.6 no.1
    • /
    • pp.24-29
    • /
    • 2006
  • In this paper, we analyzed new two-branch polarization diversity at the receiving end of a mobile link which a transmitter emits circularly polarized wave. To analyze the correlation coefficient considered by XPD(Cross Polarization Discrimination) between the two received signals, a simple theoretical model of circular polarization diversity is adopted and experimental measurements are also conducted. From both theoretical and measurement results, it can be seen that the proposed circular polarization diversity scheme is more effective than that of the conventional linear polarization diversity.

A Study on the Circular Multi-Family Housing for Designing Local Identity (지역성 구현을 위한 집합주택 원형 주거동의 표현 특성 연구)

  • Moon, Eun-Mi
    • Korean Institute of Interior Design Journal
    • /
    • v.22 no.4
    • /
    • pp.121-129
    • /
    • 2013
  • This study was aimed at determining the characteristics of circular multi-family housing under the assumption that the shape of a residential building affects local identity. A total of six case studies were included in this study, three case studies on idle historical industrial facilities turned into residential buildings and another three on multi-family housing located in newly developed residential complexes. The study drew its conclusions as follows. First, the design of circular multi-family housing was intended to maximize security and defense from the outside in older times. This was later developed as the terrace house style with geometric urban squares designed under the urban planning of the Baroque period. This evolved high-density housing with a courtyard in the center offering a green open space, with the aim of restoring a sense of humanity. Second, the six case studies on circular multi-family housing were analyzed from the viewpoint of each factor of local identity, including historical and cultural, landscape, and community. Third, the historical and cultural elements of circular multi-family housing are found in some unused historical industrial facilities remodeled into residential buildings. They provide new capabilities and shapes desired by society at a given time, while maintaining familiar styles and elements of history, integrating a legacy of the past into the present. Fourth, circular multi-family housing with unique shapes and structures often become landmarks of a region with their distinctive appearance against a uniform urban environment and the monotonous scenery of residential complexes. They also show a high level of visual awareness with the distinctive shapes made possible when new elements are added to a historical exterior. Finally, circular multi-family housing with courtyards in the center prompt social contact between inhabitants, especially with dormitories and rental houses for the low-income bracket, which provide a small individual units with high use common space. Circular multi-family housing are planned in a manner similar to a small village or a city. They are designed to enhance sense of community, allocating various public amenities and provide cultural and commercial spaces on the ground floor and courtyard areas.

Thermal effect on axisymmetric bending of functionally graded circular and annular plates using DQM

  • Hamzehkolaei, N. Safaeian;Malekzadeh, P.;Vaseghi, J.
    • Steel and Composite Structures
    • /
    • v.11 no.4
    • /
    • pp.341-358
    • /
    • 2011
  • This paper presents the effects of thermal environment and temperature-dependence of the material properties on axisymmetric bending of functionally graded (FG) circular and annular plates. The material properties are assumed to be temperature-dependent and graded in the thickness direction. In order to accurately evaluate the effect of thermal environment, the initial thermal stresses are obtained by solving the thermoelastic equilibrium equations. Governing equations and the related boundary conditions, which include the effects of initial thermal stresses, are derived using the virtual work principle based on the elasticity theory. The differential quadrature method (DQM) as an efficient and robust numerical tool is used to obtain the initial thermal stresses and response of the plate. Comparison studies with some available results for FG plates are performed. The influences of temperature rise, temperature-dependence of material properties, material graded index and different geometrical parameters are carried out.

Performance Analysis of Cascade AOA Estimator with Concentric Ring Array Antenna (동심원 배열 안테나를 적용한 캐스케이드 도래각 추정 성능분석)

  • Kim, Tae-Yun;Hwang, Suk-Seung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.5
    • /
    • pp.849-856
    • /
    • 2020
  • The Angle-of-Arrival(AOA) information for an array antenna receiver is one of the important factors for estimating the location of specific signals and detecting signals efficiently, in various situations. The AOA estimator in the satellite environment can rapidly calculate the AOA information in the wide area, utilizing a planar (grid, circular) array antenna mounted on the satellite. Since the satellite receiver has the limitation of the array antenna size, the concentric circular (ring) array (CCA or CRA) antenna structure with comparatively small size but with multiple antenna elements is more efficient than the uniform circular array (UCA) structure, for the satellite environment. In this paper, we introduce a cascade AOA estimation algorithm based on CRA, consisting of CAPON and Beamspace MUSIC. In addition, we provide computer simulation examples for verifying the estimation performance of the cascade AOA estimation algorithm based on CRA and compare it to the case of UCA.

Factors affecting consumers' perceptions of the public recycling of fashion waste and circular fashion products (패션폐기물의 공공분리배출과 순환패션제품에 대한 소비자의 인식과 영향요인)

  • Hyojung Suk
    • The Research Journal of the Costume Culture
    • /
    • v.31 no.2
    • /
    • pp.141-160
    • /
    • 2023
  • Controlling fashion waste throughout the entire product lifecycle is critical in a circular economy. This study explored the possibility of establishing a public recycling system for fashion waste. Since consumer interests and participation are essential, theoretical research, social-text analysis, and quantitative research were conducted to identify consumers' perceptions of the public recycling of fashion waste and circular fashion. Data were collected via an online survey among women in their 20-30's living in Korea, and 304 samples were used for data analysis. The results were as follows. First, consumers' perceptions of recycling fashion waste were composed of recycling difficulty, the need for public recycling, and the need for EPR. Circular fashion perception comprised favor, environment protection, attractiveness, economics, quality and hygiene risks, and lack of diversity. Second, the reuse-recycle attitude and need for EPR affected the favor of all types of circular fashion products. Third, environmental concerns impacted attractiveness, and the favor significantly affected the purchase intention of all types of circular fashion products. In particular, quality and hygiene risk negatively affected the purchase intention of used-fashion products, while attractiveness positively impacted the purchase intention of upcycled-fashion products. The results implied that discussing the public recycling system of fashion waste and EPR policy is imperative. The results also showed the need to classify different types of circular fashion products, such as used, upcycled, and regenerated fashion items, to examine consumers' perceptions. In addition, the recycling of the fashion waste scale developed in this study could be used for further research.

Behavior of circular concrete-filled steel tubular columns under pure torsion

  • Ding, Fa-xing;Fu, Qiang;Wen, Bing;Zhou, Qi-shi;Liu, Xue-mei
    • Steel and Composite Structures
    • /
    • v.26 no.4
    • /
    • pp.501-511
    • /
    • 2018
  • Concrete-filled steel tubular (CFT) columns are commonly used in engineering structures and always subjected to torsion in practice. This paper is thus devoted to investigate the mechanical behavior of circular CFT columns under pure torsion.3D finite element models based on reasonable material constitutive relation were established for analyzing the load-strain ($T-{\gamma}$) curves of circular CFT columns under pure torsion. The numerical simulation indicated that local bulking of the steel tube in CFT columns was prevented and the shear strength and ductility of the core concrete were significantly improved due to the confinement effect between the steel tube and the core concrete. Based on the results, formulas to predict the torsional ultimate bearing capacity of circular CFT columns were proposed with satisfactory correspondence with experimental results. Besides, formulas of composite shear stiffness and the overall process of the $T-{\gamma}$ relation of circular CFT columns under pure torsion were proposed.