• 제목/요약/키워드: circular concrete columns

검색결과 275건 처리시간 0.025초

Behavior and calculation on concrete-filled steel CHS (Circular Hollow Section) beam-columns

  • Han, Lin-Hai;Yao, Guo-Huang;Zhao, Xiao-Ling
    • Steel and Composite Structures
    • /
    • 제4권3호
    • /
    • pp.169-188
    • /
    • 2004
  • A mechanics model is developed in this paper for concrete-filled steel CHS (circular hollow section) beam-columns. A unified theory is described where a confinement factor (${\xi}$) is introduced to describe the composite action between the steel tube and the filled concrete. The predicted load versus deformation relationship is in good agreement with test results. The theoretical model was used to investigate the influence of important parameters that determine the ultimate strength of concrete-filled steel CHS beam-columns. The parametric and experimental studies provide information for the development of formulas for the calculation of the ultimate strength of the composite beam-columns. Comparisons are made with predicted beam-columns strengths using the existing codes, such as LRFD-AISC-1999, AIJ-1997, BS5400-1979 and EC4-1994.

Polynomial modeling of confined compressive strength and strain of circular concrete columns

  • Tsai, Hsing-Chih
    • Computers and Concrete
    • /
    • 제11권6호
    • /
    • pp.603-620
    • /
    • 2013
  • This paper improves genetic programming (GP) and weight genetic programming (WGP) and proposes soft-computing polynomials (SCP) for accurate prediction and visible polynomials. The proposed genetic programming system (GPS) comprises GP, WGP and SCP. To represent confined compressive strength and strain of circular concrete columns in meaningful representations, this paper conducts sensitivity analysis and applies pruning techniques. Analytical results demonstrate that all proposed models perform well in achieving good accuracy and visible formulas; notably, SCP can model problems in polynomial forms. Finally, concrete compressive strength and lateral steel ratio are identified as important to both confined compressive strength and strain of circular concrete columns. By using the suggested formulas, calculations are more accurate than those of analytical models. Moreover, a formula is applied for confined compressive strength based on current data and achieves accuracy comparable to that of neural networks.

결합원형띠철근을 갖는 철근콘크리트 교각의 내진성능평가 (Seismic Performance Assessment of Reinforced Concrete Bridge Columns with Interlocking Circular Hoops)

  • 김태훈;박광순;강형택
    • 한국지진공학회논문집
    • /
    • 제15권6호
    • /
    • pp.81-90
    • /
    • 2011
  • 이 연구의 목적은 결합원형띠철근을 갖는 철근콘크리트 교각의 내진성능을 파악하는데 있다. 3개의 인터락킹 교각 실험체에 일정 축하중 하에서 횡방향 반복하중을 가하는 준정적 실험을 수행하였다. 사용된 프로그램은 철근콘크리트 구조물의 해석을 위한 RCAHEST이다. 사용된 해석기법은 조사된 실험체에 대하여 하중단계에 따라 성능을 비교적 정확하게 예측하였다. 실험적, 해석적 결과로부터 결합원형띠철근을 갖는 철근콘크리트 교각의 설계와 시공 실무를 향상하기 위한 상세를 제시하였다.

Investigation on circular and octagonal concrete-filled double skinned steel tubular short columns under axial compression

  • R, Manigandan;Kumar, Manoj;Shedge, Hrishikesh N.
    • Steel and Composite Structures
    • /
    • 제44권1호
    • /
    • pp.141-154
    • /
    • 2022
  • This paper describes the experimental and numerical investigation on circular and octagonal CFDST short columns under concentric loading to study their responses to various internal circular steel tube sizes by the constant cross-sectional dimensions of the external circular and octagonal steel tube. The non-linear finite element analysis of circular and octagonal CFDST columns was executed using the ABAQUS to forecast and compare the axial behavior influenced by the various sizes of internal circular steel tubes. The study shows that the axial compressive strength and ductility of circular and octagonal CFDST columns were significantly influenced by inner steel tubes with the strengths of constituent materials.

강관 코아 합성 중공 기둥의 연성 거동 연구 (Ductility of Circular Hollow Columns with Internal Steel Tube)

  • 강영종;한승룡;박남회
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2002년도 춘계학술대회 논문집
    • /
    • pp.183-188
    • /
    • 2002
  • In locations where the cost or concrete is relatively high, or in situations where the weight or concrete members is to be kept to a minimum, it may be economical to use hollow reinforced concrete vertical members. Hollow reinforced concrete columns with low axial load, moderate longitudinal steel percentage, and a reasonably thick wall were found to perform in a ductile manner at the flexural strength, similar to solid columns. However, hollow reinforced concrete columns with high axial load, high longitudinal steel percentage, and a thin wall were found to behave in a brittle manner at the flexural strength, since the neutral axis is forced to occur away from the inside face of the tube towards the section centroid and, as a result, crushing of concrete occurs near the unconfined inside face of the section. If, however, a steel tube is placed near the inside face of a circular hollow column, the column can be expected not to fail in a brittle manner by disintegration of the concrete in the compression zone. Design recommendation and example by moment-curvature analysis program for curvature ductility are presented. Theoretical moment-curvature analysis for reinforced concrete columns, indicating the available flexural strength and ductility, can be conducted providing the stress-strain relation for the concrete and steel are known. In this paper, a unified stress-stain model for confined concrete by Mander is developed for members with circular sections.

  • PDF

중공원형 철근콘크리트 교각의 횡방향철근에 따른 내진성능평가 (Seismic Performance Assessment of Hollow Circular Reinforced Concrete Bridge Columns with Confinement Steel)

  • 김태훈;강형택
    • 한국지진공학회논문집
    • /
    • 제16권1호
    • /
    • pp.13-25
    • /
    • 2012
  • 이 연구의 목적은 중공원형 철근콘크리트 교각의 횡방향철근에 따른 지진거동을 파악하고 합리적이면서 경제적인 내진 설계기준의 개발을 위한 자료를 제공하는데 있다. 3개의 중공원형 교각 실험체에 일정 축하중 하에서 횡방향 반복하중을 가하는 준정적 실험을 수행하였다. 정확하고 올바른 성능평가를 위하여 신뢰성 있는 비선형 유한요소해석 프로그램을 사용하였다. 이용된 해석기법은 조사된 실험체에 대하여 하중단계에 따라 내진성능을 비교적 정확하게 예측하였다. 실험적, 해석적 결과로부터 중공원형 철근콘크리트 교각의 설계와 시공 실무를 향상하기 위한 내진상세를 제시하였다.

Seismic behavior of Q690 circular HCFTST columns under constant axial loading and reversed cyclic lateral loading

  • Wang, Jiantao;Sun, Qing
    • Steel and Composite Structures
    • /
    • 제32권2호
    • /
    • pp.199-212
    • /
    • 2019
  • This paper presents an investigation on seismic behavior of out-of-code Q690 circular high-strength concrete-filled thin-walled steel tubular (HCFTST) columns made up of high-strength (HS) steel tubes (yield strength $f_y{\geq}690MPa$). Eight Q690 circular HCFTST columns with various diameter-to-thickness (D/t) ratios, concrete cylinder compressive strengths ($f_c$) and axial compression ratios (n) were tested under the constant axial loading and reversed cyclic lateral loading. The obtained lateral load-displacement hysteretic curves, energy dissipation, skeleton curves and ductility, and stiffness degradation were analyzed in detail to reflect the influences of tested parameters. Subsequently, a simplified shear strength model was derived and validated by the test results. Finally, a finite element analysis (FEA) model incorporating a stress triaxiality dependent fracture criterion was established to simulate the seismic behavior. The systematic investigation indicates the following: compared to the D/t ratio and axial compression ratio, improving the concrete compressive strength (e.g., the HS thin-walled steel tube filled with HS concrete) had a slight influence on the ductility but an obvious enhancement of energy dissipation and peak load; the simplified shear strength model based on truss mechanism accurately predicted the shear-resisting capacity; and the established FEA model incorporating steel fracture criterion simulated well the seismic behavior (e.g., hysteretic curve, local buckling and fracture), which can be applied to the seismic analysis and design of Q690 circular HCFTST columns.

철근콘크리트 원형기둥의 전단철근 유효단면적 평가 (Evaluation of Effective Section Area of Shear Steel in Reinforced Concrete Circular Columns)

  • 김장훈
    • 콘크리트학회논문집
    • /
    • 제11권3호
    • /
    • pp.81-88
    • /
    • 1999
  • 원형 철근콘크리트 기둥의 전단보강철근에 의한 저항강도의 평가를 위하여 전단에 의한 사인장 균열 면을 관통하는 원형 전단보강철근의 횡하중 작용방향의 평균 인장력을 산정하였다 이를 위하여 원형 전단보강철근이 이루는 원의 중심선간 직경, 수직 배근간격 및 기둥축 방향에 대한 사인장 균열면을 고려하였으며, 이들 변수들을 이용하여 원형 전단보강철근의 유효단면적을 계산하는 공식을 제안하였다. 연구결과, 원형 전단보강철근의 유효단면적 계산을 위하여 근 10년 간 사용되어 온 상수 계수가 모든 경우에 일률적으로 사용될 수 없음을 보여주고 있다 즉, 기존에 사용되는 원형전단철근 유효단면적은 기둥의 전단저항강도의 계산에 있어서, 전단철근의 배근간격이 비교적 넓은 비내지진 지역에서는 안전 측의 예측을 하게 되어 구조물의 안전상 큰 문제가 없지만, 배근간격이 촘촘하거나 원통형강관을 사용하게 되는 내진 지역에서는 기둥의 전단저항강도를 실제보다 20% 정도 과하게 예측하여 구조물의 안전에 좋지 않은 결과를 낳을 수도 있다.

Experimental behaviours of steel tube confined concrete (STCC) columns

  • Han, Lin-Hai;Yao, Guo-Huang;Chen, Zhi-Bo;Yu, Qing
    • Steel and Composite Structures
    • /
    • 제5권6호
    • /
    • pp.459-484
    • /
    • 2005
  • In recent years, the use of steel tube confined concrete (STCC) columns has been the interests of many structural engineers. The present study is an attempt to study the monotonic and cyclic behaviours of STCC columns. For the monotonic behaviours, a series of tests on STCC stub columns (twenty one), and beam-columns (twenty) were carried out. The main parameters varied in the tests are: (1) column section types, circular and square; (2) tube diameter (or width) to thickness ratio, from 40 to 162, and (3) load eccentricity ratio (e/r), from 0 to 0.5. For the cyclic behaviours, the test parameters included the sectional types and the axial load level (n). Twelve STCC column specimens, including 6 specimens with circular sections and 6 specimens with square sections were tested under constant axial load and cyclically increasing flexural loading. Comparisons are made with predicted column strengths and flexural stiffness using the existing codes. It was found that STCC columns exhibit very high levels of energy dissipation and ductility, particularly when subjected to high axial loads. Generally, the energy dissipation ability of the columns with circular sections was much higher than those of the specimens with square sections. Comparisons are made with predicted column strengths and flexural stiffness using the existing codes such as AIJ-1997, AISCLRFD- 1994, BS5400-1979 and EC4-1994.

Experimental Study and Confinement Analysis on RC Stub Columns Strengthened with Circular CFST Under Axial Load

  • Liang, Hongjun;Lu, Yiyan;Hu, Jiyue;Xue, Jifeng
    • 국제강구조저널
    • /
    • 제18권5호
    • /
    • pp.1577-1588
    • /
    • 2018
  • As the excellent mechanical performance and easy construction of concrete filled steel tubes (CFST) composite structure, it has the potential to be used to strengthen RC pier columns. Therefore, tests were conducted on 2 reinforcement concrete (RC) stub columns and 9 RC columns strengthened with circular CFST under axial loading. The test results show that the circular CFST strengthening method is effective since the mean bearing capacity of the RC columns is increased at least 3.69 times and the ductility index is significantly improved more than 30%. One of the reasons for enhancement is obvious confinement provided by steel tube besides the additional bearing capacity supplied by the strengthening materials. From the analysis of the enhancement ratio, the strengthening structure has at least an extra 20% amplification except for taking full advantage of the strength of the strengthening material. Through the analysis of confining stress provided by steel tube and the stress-strain relationship of confined concrete, it is found that the strength of the core concrete can be increased by 21-33% and the ultimate strain can be enhanced to beyond $15,000{\mu}{\varepsilon}$.