• Title/Summary/Keyword: circuit balancing

Search Result 132, Processing Time 0.028 seconds

The Characteristics of Asymmetric Hybrid Supercapacitor Cells and Modules for Power Quality Stabilization (전력품질 안정화용 비대칭 하이브리드 슈퍼커패시터 셀 및 모듈 특성)

  • Lee, Byung-Gwan;Maeng, Ju-Cheul;Lee, Joung-Kyu;Yoon, Jung-Rag
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.4
    • /
    • pp.617-621
    • /
    • 2016
  • In addition to the energy storage facilities based on high power technologies, Electric double layer capacitors(EDLC) are today's candidate for power quality stabilization. However, its low energy density is often inhibiting factor for application of electric power industry. Hybrid supercapacitor is an promising energy storage device that positioned between conventional EDLC and Li-ion battery. This paper describes the preparation and characteristics of a hybrid supercapacitor and module for power quality stabilization. A cylindrical 3200F hybrid supercapacitor ($60{\times}74.5mm$) was assembled by using the $Li_4Ti_5O_{12}$ electrode as an anode and activated carbon as a cathode. It shows 2.5 times higher energy density than conventional EDLC with the same volume. In order to determine the characteristics of the hybrid supercapacitor Module for uninterruptible power supply (UPS), hybrid supercapacitor cells were connected in series with active balancing circuit. At even the high current density of 14A(10C), Module prepared by 18 cells showed the capacitance of 170F at 30~50V, suggesting the applicability for UPS.

A Study of the Three Port NPC based DAB Converter for the Bipolar DC Grid (양극성 직류 배전망에 적용 가능한 3포트 NPC 기반의 DAB 컨버터에 대한 연구)

  • Yun, Hyeok-Jin;Kim, Myoungho;Baek, Ju-Won;Kim, Ju-Yong;Kim, Hee-Je
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.4
    • /
    • pp.336-344
    • /
    • 2017
  • This paper presents the three-port DC-DC converter modeling and controller design procedure, which is part of the solid-state transformer (SST) to interface medium voltage AC grid to bipolar DC distribution network. Due to the high primary side DC link voltage, the proposed converter employs the three-level neutral point clamped (NPC) topology at the primary side and 2-two level half bridge circuits for each DC distribution network. For the proposed converter particular structure, this paper conducts modeling the three winding transformer and the power transfer between each port. A decoupling method is adopted to simplify the power transfer model. The voltage controller design procedure is presented. In addition, the output current sharing controller is employed for current balancing between the parallel-connected secondary output ports. The proposed circuit and controller performance are verified by experimental results using a 30 kW prototype SST system.

Unbalancing Voltage Control of LVDC Bipolar Distribution System for High Power Quality (전력 품질 향상을 위한 LVDC 양극성 배전 시스템의 불평형 전압 제어)

  • Lee, Hee-Jun;Shin, Soo-Choel;Kang, Jin-Wook;Won, Chung-Yuen
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.6
    • /
    • pp.486-496
    • /
    • 2016
  • The voltage unbalance of an LVDC bipolar distribution system was controlled for high power quality. Voltage unbalance may occur in a bipolar distribution system depending on the operation of the converter and load usage. Voltage unbalance can damage sensitive load and lead to converter accidents. The conditions that may cause voltage unbalance in a bipolar distribution system are as follows. First, three-level AC/DC converters in bipolar distribution systems can lead to voltage unbalance. Second, bipolar distribution systems can be at risk for voltage unbalance because of load usage. In this paper, the output DC link of a three-level AC/DC converter was analyzed for voltage unbalance, and the bipolar voltage was controlled with algorithms. In the case of additional voltage unbalance according to load usage, the bipolar voltage was controlled using the proposed converter. The proposed converter is a dual half-bridge converter, which was improved from the secondary circuit of a dual half-bridge converter. A control algorithm for bipolar voltage control without additional converters was proposed. The balancing control of the bipolar distribution system with distributed power was verified through experiments.

Detection Algorithm and Extract of Deviation Parameters for Battery Pack Based on Internal Resistance Aging (저항 열화 기반의 배터리 팩 편차 파라미터 추출 방안 및 검출 알고리즘)

  • Song, Jung-Yong;Huh, Chang-Su
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.7
    • /
    • pp.515-520
    • /
    • 2018
  • A large number of lithium-ion batteries are arranged in series and parallel in battery packs, such as those in electric vehicles or energy storage systems. As battery packs age, their output power and energy density drop because of voltage deviation, constant and non-uniform exposure to abnormal environments, and increased contact resistance between batteries; this reduces application system efficiency. Despite the balancing circuit and logic of the battery management system, the output of the battery pack is concentrated in the most severely aged unit cell and the output is frequently limited by power derating. In this study, we implemented a cell imbalance detection algorithm and selected parameters to detect a sudden decrease in battery pack output. In addition, we propose a method to increase efficiency by applying the measured testing values considering the operating conditions and abnormal conditions of the battery pack.

A New Current Balancing Methods of CCFL for LCD TV Backlight (LCD 백라이트를 위한 새로운 CCFL 병렬구동 인버터)

  • Lee, Soung-Ju;Kim, Ho-Jin;Lee, Hai-Don;Mok, Hyung-Soo;Choe, Gyu-Ha;Yang, Seung-Uk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.371-377
    • /
    • 2006
  • Cold cathode fluorescent lamps (CCFL) show complex characteristics, which make it difficult to drive them in parallel. In this paper, a multi-lamp driving scheme is proposed to drive multiple lamps for LCD back light to reduce output current unbalance. This propose system is composed of parallel CCFLs, series transformers. The driving system adopts only one backlight inverter to drive multi cold cathode fluorescent lamps (CCFL). Moreover the circuit introduces a multi-lamp driving transformer to reduce lamp-current imbalance. The validity of the proposed scheme is confirmed by the simulated and experimental results.

A Study on the Electrical Characteristics of Battery Capacitor Applied to Photovoltaic Power System (태양광 시스템에 적용한 배터리 커패시터의 전기적 특성에 관한 연구)

  • Mang, Ju-Cheul;Yoon, Jung-Rag
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.12
    • /
    • pp.1740-1744
    • /
    • 2017
  • This paper describes the preparation and characteristics of a battery capacitor and module for solar power system. A cylindrical 30,000F battery capacitor ($60{\times}138mm$) was assembled by using the $LTO(Li_4Ti_5O_{12})$ electrode as an anode and $NMC(LiNiMnCoO_2)-LCO(LiCoO_2)$ as a cathode. The battery capacitor has reduced energy density and power density under high CC(constant current) and CP(constant power) conditions. Battery capacitor module (16V, 11Ah) was fabricated using an asymmetric hybrid capacitor with a capacitance of 30,000F. In order to determine the characteristics of the battery capacitor Module for solar power system, battery capacitor cells were connected in series with active balancing circuit. As a result of measuring the 100w LED lamp, it was discharged at the voltage of 15V~10V, and the compensation time at discharge was measured to be about 4979s. Experimental results show that it can be applied to applications related to solar power system by applying battery capacitor module.

Development of Super-capacitor Battery Charger System based on Photovoltaic Module for Agricultural Electric Carriers

  • Kang, Eonuck;Pratama, Pandu Sandi;Byun, Jaeyoung;Supeno, Destiani;Chung, Sungwon;Choi, Wonsik
    • Journal of Biosystems Engineering
    • /
    • v.43 no.2
    • /
    • pp.94-102
    • /
    • 2018
  • Purpose: In this study, a maintenance free super-capacitor battery charging system based on the photovoltaic module, to be used in agricultural electric carriers, was developed and its charging characteristics were studied in detail. Methods: At first, the electric carrier system configuration is introduced and the electric control components are presented. The super-capacitor batteries and photovoltaic module used in the experiment are specified. Next, the developed charging system consisting of a constant current / constant voltage Buck converter as the charging device and a super-capacitor cell as a balancing device are initiated. The proposed circuit design, a developed PCB layout of each device and a proportional control to check the current and voltage during the charging process are outlined. An experiment was carried out using a developed prototype to clarify the effectiveness of the proposed system. A power analyzer was used to measure the current and voltage during charging to evaluate the efficiency of the energy storage device. Finally, the conclusions of this research are presented. Results: The experimental results show that the proposed system successfully controls the charging current and balances the battery voltage. The maximum voltage of the super-capacitor battery obtained by using the proposed battery charger is 16.2 V, and the maximum charging current is 20 A. It was found that the charging time was less than an hour through the duty ratio of 95% or more. Conclusions: The developed battery charging system was successfully implemented on the agricultural electric carriers.

Single Phase 5-level Inverter with DC-link Switches (DC링크 스위치를 갖는 단상 5레벨 인버터)

  • Choi, Young-Tae;Sun, Ho-Dong;Park, Min-Young;Kim, Heung-Geun;Chun, Tea-Won;Nho, Eui-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.283-292
    • /
    • 2011
  • This paper proposed a new multi-level inverter topology based on a H-bridge with two switches and two diodes connected to the DC-link. The output voltage of the proposed topology is quite closer to a sinusoidal waveform compared with a typical single phase inverter. The proposed multi-level inverter is applicable to a power conditioning system for renewable energy sources, and it can be also used as a building block of a cascaded multi-level inverter for a high voltage application. In case of conventional H-bridge type or NPC type multi-level inverter, 8 controllable switches are used to obtain a 5 level output voltage, but the proposed multi-level inverter requires only 6 controllable switches. Thus the circuit configuration is quite simple, reliable and cost-effective implementation is possible. The efficiency can be improved owing to the reduction of the switching loss. A new PWM method based on POD modulation is suggested which requires only one carrier signal. The switching sequence to make the capacitor voltage balanced is also considered. The feasibility is studied through simulation and experiment.

Investigations of Multi-Carrier Pulse Width Modulation Schemes for Diode Free Neutral Point Clamped Multilevel Inverters

  • Chokkalingam, Bharatiraja;Bhaskar, Mahajan Sagar;Padmanaban, Sanjeevikumar;Ramachandaramurthy, Vigna K.;Iqbal, Atif
    • Journal of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.702-713
    • /
    • 2019
  • Multilevel Inverters (MLIs) are widely used in medium voltage applications due to their various advantages. In addition, there are numerous types of MLIs for such applications. However, the diode-less 3-level (3L) T-type Neutral Point Clamped (NPC) MLI is the most advantageous due to its low conduction losses and high potential efficiency. The power circuit of a 3L T-type NPC is derived by the conventional two level inverter by a slight modification. In order to explore the MLI performance for various Pulse Width Modulation (PWM) schemes, this paper examines the operation of a 3L (five level line to line) T-type NPC MLI for various types of Multi-Carriers Pulse Width Modulation (MCPWM) schemes. These PWM schemes are compared in terms of their voltage profile, total harmonic distortion (THD) and conduction losses. In addition, a 3L T-type NPC MLI is also compared with the conventional NPC in terms of number of switches, clamping diodes, main diodes and capacitors. Moreover, the capacitor-balancing problem is also investigated using the Neutral Point Fluctuation (NPF) method with all of the MCPWM schemes. A 1kW 3L T-type NPC MLI is simulated in MATLAB/Simulink and implemented experimentally and its performance is tested with a 1HP induction motor. The results indicate that the 3L T-type NPC MLI has better performance than conventional NPC MLIs.

Design Optimization Simulation of Superconducting Fault Current Limiter for Application to MVDC System (MVDC 시스템의 적용을 위한 초전도 한류기의 설계 최적화 시뮬레이션)

  • Seok-Ju Lee
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.29 no.3
    • /
    • pp.41-49
    • /
    • 2024
  • In this paper, we validate simulation results for the design optimization of a Superconducting Fault Current Limiter (SFCL) intended for use in Medium Voltage Direct Current systems (MVDC). With the increasing integration of renewable energy and grid connections, researchers are focusing on medium-voltage systems for balancing energy in new and renewable energy networks, rather than traditional transmission or distribution networks. Specifically, for DC distribution networks dealing with fault currents that must be rapidly blocked, current-limiting systems like superconducting current limiters offer distinct advantages over the operation of DC circuit breakers. The development of such superconducting current limiters requires finite element analysis (FEM) and an extensive design process before prototype production and evaluation. To expedite this design process, the design outcomes are assimilated using a Reduced Order Model (ROM). This approach enables the verification of results akin to finite element analysis, facilitating the optimization of design simulations for production and mass production within existing engineering frameworks.