• Title/Summary/Keyword: circuit

Search Result 17,004, Processing Time 0.037 seconds

Analysis of Photovoltaic Performance Improvement of Cu2Zn1-xCdxSn(SxSe1-x)4 Thin Film Solar Cells by Controlling Cd2+ Element Alloying Time Using CBD Method (CBD 공법을 이용하여 Cd2+ 원소 Alloying 시간을 조절한 Cu2Zn1-xCdxSn(SxSe1-x)4 박막 태양전지의 광전지 성능 향상 분석)

  • Sang Woo, Park;Suyoung, Jang;Jun Sung, Jang;Jin Hyeok, Kim
    • Korean Journal of Materials Research
    • /
    • v.32 no.11
    • /
    • pp.481-488
    • /
    • 2022
  • The Cu2ZnSn(SxSe1-x)4 (CZTSSe) absorbers are promising thin film solar cells (TFSCs) materials, to replace existing Cu(In,Ga)Se2 (CIGS) and CdTe photovoltaic technology. However, the best reported efficiency for a CZTSSe device, of 13.6 %, is still too low for commercial use. Recently, partially replacing the Zn2+ element with a Cd2+element has attracting attention as one of the promising strategies for improving the photovoltaic characteristics of the CZTSSe TFSCs. Cd2+ elements are known to improve the grain size of the CZTSSe absorber thin films and improve optoelectronic properties by suppressing potential defects, causing short-circuit current (Jsc) loss. In this study, the structural, compositional, and morphological characteristics of CZTSSe and CZCTSSe thin films were investigated using X-ray diffraction (XRD), X-ray fluorescence spectrometer (XRF), and Field-emission scanning electron microscopy (FE-SEM), respectively. The FE-SEM images revealed that the grain size improved with increasing Cd2+ alloying in the CZTSSe thin films. Moreover, there was a slight decrease in small grain distribution as well as voids near the CZTSSe/Mo interface after Cd2+ alloying. The solar cells prepared using the most promising CZTSSe absorber thin films with Cd2+ alloying (8 min. 30 sec.) exhibited a power conversion efficiency (PCE) of 9.33 %, Jsc of 34.0 mA/cm2, and fill factor (FF) of 62.7 %, respectively.

A Study on the Development of Low Frequency Electronic Ignition Trans for Large Combustors (대형연소기에 적용되는 저주파 전자식 점화 트랜스 개발에 관한 연구)

  • Lee, Ho-kyun;Park, Jung-cheul
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.4
    • /
    • pp.223-229
    • /
    • 2022
  • In this paper, the ignition trans used in boilers was studied. Regardless of the change in the ignition rod length and the ignition rod gap, the output frequency was measured between 59.5 and 61.3 Hz, and it was found that the low frequency circuit operated normally. When the ignition rod gap changed by 2 to 10 mm, the ignition rod length was measured from 2.8A to 3.45A at 30cm. The ignition rod length was measured from 9.37 A to 14.5 A at 500 cm and from 13.2 A to 32.6 A at 1000 cm. As the ignition rod length and the ignition rod gap increased, the current increased. As a result of measuring the secondary coil output voltage. The ignition rod length was measured from AC 0.84 kV to AC 1.75 kV at 30 cm, AC 1.17 kV to AC 1.944 at 500 cm, and AC 1.4 kV to AC 7.18 kV at 1000 cm. As the ignition rod length and the ignition rod gap increased, the output voltage of the secondary coil also increased. As a result of measuring the output voltage of the ignition trans, the ignition rod length was measured from DC 1.11 kV to DC 1.57 kV at 30cm, DC 2.49 kV to DC 3.72 kV at 500cm, and DC 3.78 kV to DC 9.42 kV at 1000cm, and the power voltage increased as the ignition rod length and interval increased.

An Extended ED-H Real-Time Scheduling Algorithm for Supporting an Intelligent PMU-Based Energy Harvesting System

  • Park, Sangsoo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.12
    • /
    • pp.17-27
    • /
    • 2022
  • In this paper, ED-H algorithm, an optimal real-time scheduling algorithm dealing with the characteristics of the integrated energy harvester system with a capacitor, is extended to satisfy the time constraint under the blackout state which is a deliberate power-off state by an intelligent power management unit adopted in the system. If the power supply system does not have enough energy, it temporarily shuts off the power supply to protect the circuit and capacitor and resumes the supply again when the capacitor is fully charged, which may delay the task execution during these blackout states by calculating the time according to the occurrence of the events. To mitigate the problem, even if task execution is delayed by the original ED-H algorithm, the remaining time of the subsequent time units no longer can afford to delay the execution of the task is predicted in the extended algorithm and the task is forced to be scheduled to meet the time deadline. According to the simulation results, it is confirmed that the algorithm proposed in this paper has a high scheduling performance increase of 0.4% to 7.7% depending on the characteristics of the set of tasks compared to the ED-H.

An Exploratory research on patent trends and technological value of Organic Light-Emitting Diodes display technology (Organic Light-Emitting Diodes 디스플레이 기술의 특허 동향과 기술적 가치에 관한 탐색적 연구)

  • Kim, Mingu;Kim, Yongwoo;Jung, Taehyun;Kim, Youngmin
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.4
    • /
    • pp.135-155
    • /
    • 2022
  • This study analyzes patent trends by deriving sub-technical fields of Organic Light-Emitting Diodes (OLEDs) industry, and analyzing technology value, originality, and diversity for each sub-technical field. To collect patent data, a set of international patent classification(IPC) codes related to OLED technology was defined, and OLED-related patents applied from 2005 to 2017 were collected using a set of IPC codes. Then, a large number of collected patent documents were classified into 12 major technologies using the Latent Dirichlet Allocation(LDA) topic model and trends for each technology were investigated. Patents related to touch sensor, module, image processing, and circuit driving showed an increasing trend, but virtual reality and user interface recently decreased, and thin film transistor, fingerprint recognition, and optical film showed a continuous trend. To compare the technological value, the number of forward citations, originality, and diversity of patents included in each technology group were investigated. From the results, image processing, user interface(UI) and user experience(UX), module, and adhesive technology with high number of forward citations, originality and diversity showed relatively high technological value. The results provide useful information in the process of establishing a company's technology strategy.

Effect of feed restriction on the maintenance energy requirement of broiler breeders

  • da Silva Teofilo, Guilherme Ferreira;Lizana, Rony Riveros;de Souza Camargos, Rosiane;Leme, Bruno Balbino;Morillo, Freddy Alexander Horna;Silva, Raully Lucas;Fernandes, Joao Batista Kochenborger;Sakomura, Nilva Kazue
    • Animal Bioscience
    • /
    • v.35 no.5
    • /
    • pp.690-697
    • /
    • 2022
  • Objective: This study aimed to evaluate the effect of the ad libitum and restricted feeding regimen on fasting heat production (FHP) and body composition. Methods: Twelve Hubbard broilers breeders were selected with the same body weight and submitted in two feeding regimes: Restricted (T1) with feed intake of 150 g/bird/d and ad libitum (T2). The birds were randomly distributed on the treatments in two runs with three replications per treatment (per run). The birds were adapted to the feed regimens for ten days. After that, they were allocated in the open-circuit chambers and kept for three days for adaptation. On the last day, oxygen consumption (VO2) and carbon dioxide production (VCO2) were measured by 30 h under fasting. The respiratory quotient (RQ) was calculated as the VCO2/VO2 ratio, and the heat production (HP) was obtained using the Brower equation (1985). The FHP was estimated throughout the plateau of HP 12 hours after the feed deprivation. The body composition was analyzed by dual-energy X-ray absorptiometry scanning at the end of each period. Data were analyzed for one-way analysis of variance using the Minitab software. Results: The daily feed intake was 30 g higher to T2 (p<0.01) than the T1. Also, the birds of the T2 had significatively (p<0.05) more oxygen consumption (+3.1 L/kg0.75/d) and CO2 production (+2.2 L/kg0.75/d). That resulted in a higher FHP 359±14 kJ/kg0.75/d for T2 than T1 296±17.23 kJ/kg0.75/d. In contrast, the RQ was not different between treatments, with an average of 0.77 for the fasting condition. In addition, protein and fat composition were not affected by the treatment, while a tendency (p<0.1) was shown to higher bone mineral content on the T1. Conclusion: The birds under ad libitum feeding had a higher maintenance energy requirement but their body composition was not affected compared to restricted feeding.

A Review on SEBS Block Copolymer based Anion Exchange Membranes for Water Electrolysis (SEBS 블록 공중합체를 기반으로 한 수전해용 음이온 교환막에 대한 총설)

  • Kim, Ji Eun;Park, Hyeonjung;Choi, Yong Woo;Lee, Jae Hun
    • Membrane Journal
    • /
    • v.32 no.5
    • /
    • pp.283-291
    • /
    • 2022
  • Hydrogen energy has received much attention as a solution to the supply of renewable energy and to respond to climate change. Hydrogen is the most suitable candidate of storing unused electric power in a large-capacity long cycle. Among the technologies for producing hydrogen, water electrolysis is known as an eco-friendly hydrogen production technology that produces hydrogen without carbon dioxide generation by water splitting reaction. Membranes in water electrolysis system physically separate the anode and the cathode, but also prevent mixing of generated hydrogen and oxygen gases and facilitate ion transfer to complete circuit. In particular, the key to next-generation anion exchange membrane that can compensate for the shortcomings of conventional water electrolysis technologies is to develop high performance anion exchange membrane. Many studies are conducted to have high ion conductivity and excellent durability in an alkaline environment simultaneously, and various materials are being searched. In this review, we will discuss the research trends and points to move forward by looking at the research on anion exchange membranes based on commercial polystyrene-b-poly(ethylene-co-butylene)-b-polystyrene (SEBS) block copolymers.

A Study on Improved Open-Circuit Voltage Characteristics Through Bi-Layer Structure in Heterojunction Solar Cells (이종접합 태양전지에서의 Bi-Layer 구조를 통한 향상된 개방전압특성에 대한 고찰)

  • Kim, Hongrae;Jeong, Sungjin;Cho, Jaewoong;Kim, Sungheon;Han, Seungyong;Dhungel, Suresh Kumar;Yi, Junsin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.6
    • /
    • pp.603-609
    • /
    • 2022
  • Passivation quality is mainly governed by epitaxial growth of crystalline silicon wafer surface. Void-rich intrinsic a-Si:H interfacial layer could offer higher resistivity of the c-Si surface and hence a better device efficiency as well. To reduce the resistivity of the contact area, a modification of void-rich intrinsic layer of a-Si:H towards more ordered state with a higher density is adopted by adapting its thickness and reducing its series resistance significantly, but it slightly decreases passivation quality. Higher resistance is not dominated by asymmetric effects like different band offsets for electrons or holes. In this study, multilayer of intrinsic a-Si:H layers were used. The first one with a void-rich was a-Si:H(I1) and the next one a-SiOx:H(I2) were used, where a-SiOx:H(I2) had relatively larger band gap of ~2.07 eV than that of a-Si:H (I1). Using a-SiOx:H as I2 layer was expected to increase transparency, which could lead to an easy carrier transport. Also, higher implied voltage than the conventional structure was expected. This means that the a-SiOx:H could be a promising material for a high-quality passivation of c-Si. In addition, the i-a-SiOx:H microstructure can help the carrier transportation through tunneling and thermal emission.

Lightning Protection System of Solar Power Generation Device (태양광발전장치의 낙뢰보호 시스템)

  • Yongho Yoon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.2
    • /
    • pp.157-162
    • /
    • 2023
  • Among the failures of photovoltaic power generation facilities, failures caused by surges account for 20% of the total failure rate, and energy emissions of tens to hundreds [A] during power generation and electrical damage to inverters and connection boards lead to electrical safety accidents. In particular, in the case of lightning, an abnormal voltage is induced in an electric circuit to destroy insulation, and the current flowing at this time causes a fire and acts as a factor that accelerates the deterioration of parts. Due to this action, the problem of electrical safety of solar power generation devices spreading from outside the city center to the inside of the city center such as houses, apartments, and government offices is emerging. Since lightning strikes cause both field-based and conducted electrical interference, this effect increases with increasing cable length or conductor loops. In addition, surge damages not only solar modules, inverters and monitoring devices, but also building facilities, which can eventually cause operational shutdown due to fire of the photovoltaic power generation system and consequent financial loss. Therefore, in this paper, a lightning protection system for solar power generation devices is studied for the purpose of reducing property damage and human casualties due to the increase in fire and electrical safety accidents caused by lightning strikes in photovoltaic power generation systems.

Effect of AlF3 addition to the plasma resistance behavior of YOF coating deposited by plasma-spraying method (플라즈마-스프레이법에 의해 코팅한 옥시불화이트륨(YOF) 증착층의 플라즈마 내식성에 미치는 불화알루미늄(AlF3) 첨가 효과)

  • Young-Ju Kim;Je Hong Park;Si Beom Yu;Seungwon Jeong;Kang Min Kim;Jeong Ho Ryu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.4
    • /
    • pp.153-157
    • /
    • 2023
  • In order to manufacture a semiconductor circuit, etching, cleaning, and deposition processes are repeated. During these processes, the inside of the processing chamber is exposed to corrosive plasma. Therefore, the coating of the inner wall of the semiconductor equipment with a plasma-resistant material has been attempted to minimize the etching of the coating and particle contaminant generation. In this study, we mixed AlF3 powder with the solid-state reacted yttrium oxyfluoride (YOF) in order to increase plasma-etching resistance of the plasma spray coated YOF layer. Effects of the mixing ratio of AlF3 with YOF powder on crystal structure, microstructure and chemical composition were investigated using XRD and FE-SEM. The plasma-etching ratios of the plasma-spray coated layers were calculated and correlation with AlF3 mixing ratio was analyzed.

Effect of Pt-Co/C Cathode Catalyst on Electrochemical Durability of Membrane in PEMFC (PEMFC에서 Pt-Co/C Cathode 촉매가 고분자막의 전기화학적 내구성에 미치는 영향)

  • Sohyeong Oh;Dong Geun Yoo;Myoung Hwan Kim;Ji Young Park;Kwonpil Park
    • Korean Chemical Engineering Research
    • /
    • v.61 no.2
    • /
    • pp.189-195
    • /
    • 2023
  • As a PEMFC (Polymer Exchange Membrane Fuel Cell) cathode catalyst, Pt-Co/C has recently been widely used because of its improved durability. In a fuel cell, electrodes and electrolytes have a close influence on each other in terms of performance and durability. The effect on the electrochemical durability of the electrolyte membrane when Pt-Co/C was replaced in the Pt/C electrode catalyst was studied. The durability of Pt-Co/C MEA (Membrane Electrode Assembly) was higher than that of Pt/C MEA in the electrochemical accelerated degradation process of PEMFC membrane. As a result of analyzing the FER (Fluorine Emission Rate) and hydrogen permeability, it was shown that the degradation rate of the membrane of Pt-Co/C MEA was lower than that of Pt/C MEA. In the OCV (Open Circuit Voltage) holding process, the rate of decrease of the active area of the Pt-Co/C electrode was lower than that of the Pt/C electrode, and the amount of Pt deposited on the membrane was smaller in Pt-Co/C MEA than in Pt/C MEA. Pt inside the polymer membrane deteriorates the membrane by generating radicals, so the degradation rate of the membrane of Pt/C MEA with a high Pt deposition rate was higher than Pt-Co/C MEA. When the Pt-Co/C catalyst was used, the electrode durability was improved, and the amount of Pt deposited on the membrane was also reduced, thereby improving the electrochemical durability of the membrane.