• 제목/요약/키워드: chromodomain-helicase-DNA binding protein 4

검색결과 5건 처리시간 0.019초

The Study of Trnascriptional Regulated Gene, $hrp^{2+}$, in Yeast

  • Choi, In-Soon
    • Journal of Life Science
    • /
    • 제11권2호
    • /
    • pp.111-115
    • /
    • 2001
  • This study was designed to clone the SNF2/SW12 helicase-related genes from the fission yeast Schizosaccha-romyces pombe and thereafter to elucidate the common functions of the proteins in this family. The $hrp^{2+}$gene was cloned by polymerase chain reaction amplification using degenerative primers from conserved SNF2 motifs within the ERCC6 gene, which encodes a protein involved in DNA excision repair. Like other SNF2/SW12 family proteins, the deduced amino acid sequence of Hrp2 contains DNA-dependent ATPase/7 helicase domains as well as the chromodomain and the DNA binding domain. This configuration is similar to that of mCHD1 (mouse chromo-ATPase/helicase-DNA-dinding protein 1), suggesting that Hrp2 is a S. pombe homolog of mCHD1, which is thought to function in altering the chromatin structure to control the gene expression. To characterize the function of Hrp2, 4 Uracil-Hrp2 fusion protein, it was purified near homogeneity by affinity chromatography on $Ni^{2+}$-NTA agarose, DEAE-Sepharose ion exchange arid Sephacryl S-200 gel filtration chromatographies. The purified fusion protein exhibited DNA-dependent ATPase activity, which was stimulated by both double-stranded and single-stranded DNA. To determine the steady-state level of $hrp^{2+}$ transcripts during growth, cells were cultured in medium and collected at every 2hr to prepare total RNAs. The northern blot analysis showed that the level of $hrp^{2+}$ transcripts reached its maximum before the cells entered the exponential growth phase and then decreased gradually, This result implies that Hrp2 may be required at early stages of cell growth.h.

  • PDF

CHD4 Conceals Aberrant CTCF-Binding Sites at TAD Interiors by Regulating Chromatin Accessibility in Mouse Embryonic Stem Cells

  • Han, Sungwook;Lee, Hosuk;Lee, Andrew J.;Kim, Seung-Kyoon;Jung, Inkyung;Koh, Gou Young;Kim, Tae-Kyung;Lee, Daeyoup
    • Molecules and Cells
    • /
    • 제44권11호
    • /
    • pp.805-829
    • /
    • 2021
  • CCCTC-binding factor (CTCF) critically contributes to 3D chromatin organization by determining topologically associated domain (TAD) borders. Although CTCF primarily binds at TAD borders, there also exist putative CTCF-binding sites within TADs, which are spread throughout the genome by retrotransposition. However, the detailed mechanism responsible for masking the putative CTCF-binding sites remains largely elusive. Here, we show that the ATP-dependent chromatin remodeler, chromodomain helicase DNA-binding 4 (CHD4), regulates chromatin accessibility to conceal aberrant CTCF-binding sites embedded in H3K9me3-enriched heterochromatic B2 short interspersed nuclear elements (SINEs) in mouse embryonic stem cells (mESCs). Upon CHD4 depletion, these aberrant CTCF-binding sites become accessible and aberrant CTCF recruitment occurs within TADs, resulting in disorganization of local TADs. RNA-binding intrinsically disordered domains (IDRs) of CHD4 are required to prevent this aberrant CTCF binding, and CHD4 is critical for the repression of B2 SINE transcripts. These results collectively reveal that a CHD4-mediated mechanism ensures appropriate CTCF binding and associated TAD organization in mESCs.

Purification and Characterization of Hrp1, a Homolog of Mouse CHD1 from the Fission Yeast Schizosaccharomyces pombe

  • Yong Hwan Jin;Eung Jae Yoo;Yeun Kyu Jang;Seung Hae Kim;Chee-Gun Lee;Rho Hyun Seong;Seung Hwan Hong;Sang Dai Park
    • Animal cells and systems
    • /
    • 제2권4호
    • /
    • pp.539-543
    • /
    • 1998
  • Hrp1, of Schizosaccharomyces pombe, is a new member of the SW12/SNF2 protein family that contains a chromodomain and a DNA binding domain as well as ATPase/7 helicase domains. This configuration suggests that Hrp1 could be a homolog of mouse CHD1, which is thought to function in altering the chromatin structure to facilitate gene expression. To understand the enzymatic nature of Hrp1 we purified the 6-Histidine-tagged Hrp1 protein (6$\times$His-Hrp1) to homogeneity from a S. pombe Hrp1-overexpressing strain and hen examined its biochemical properties. We demonstrate that the purified 6$\times$His-Hrp1 protein exhibited a DNA-binding activity with a moderate preference to the (A+T)-rich tract in double-stranded NA via a minor groove interaction. However, we failed to detect any intrinsic DNA helicase activity from the purified Hrp1 like other SW12/SNF2 proteins. These observations suggest that the DNA binding activities of Hrp1 may be involved in the remodeling of the chromatin structure with DNA-dependent ATPase. We propose that Hrp1 may function in heterochromatins as other proteins with a chromo- or ATPase/helicase domain and play an important role in the determination of chromatin architecture.

  • PDF

Novel Genetic Associations Between Lung Cancer and Indoor Radon Exposure

  • Choi, Jung Ran;Koh, Sang-Baek;Park, Seong Yong;Kim, Hye Run;Lee, Hyojin;Kang, Dae Ryong
    • Journal of Cancer Prevention
    • /
    • 제22권4호
    • /
    • pp.234-240
    • /
    • 2017
  • Background: Lung cancer is the leading cause of cancer-related death worldwide, for which smoking is considered as the primary risk factor. The present study was conducted to determine whether genetic alterations induced by radon exposure are associated with the susceptible risk of lung cancer in never smokers. Methods: To accurately identify mutations within individual tumors, next generation sequencing was conduct for 19 pairs of lung cancer tissue. The associations of germline and somatic variations with radon exposure were visualized using OncoPrint and heatmap graphs. Bioinformatic analysis was performed using various tools. Results: Alterations in several genes were implicated in lung cancer resulting from exposure to radon indoors, namely those in epidermal growth factor receptor (EGFR), tumor protein p53 (TP53), NK2 homeobox 1 (NKX2.1), phosphatase and tensin homolog (PTEN), chromodomain helicase DNA binding protein 7 (CHD7), discoidin domain receptor tyrosine kinase 2 (DDR2), lysine methyltransferase 2C (MLL3), chromodomain helicase DNA binding protein 5 (CHD5), FAT atypical cadherin 1 (FAT1), and dual specificity phosphatase 27 (putative) (DUSP27). Conclusions: While these genes might regulate the carcinogenic pathways of radioactivity, further analysis is needed to determine whether the genes are indeed completely responsible for causing lung cancer in never smokers exposed to residential radon.

한국 최초 인공번식에 성공한 따오기의 성별구별 (Sex Identification of the First Incubated Chicks of the Crested Ibis Nipponia nippon in Korea)

  • 김경아;차재석;김태좌;김경민;박희천
    • 생명과학회지
    • /
    • 제21권5호
    • /
    • pp.626-630
    • /
    • 2011
  • 세계적 멸종위기종인 따오기(Nipponia nippon)는 2008년 10월에 중국에서 1쌍이 도입된 후 한국최초로 인공번식에 성공하였다. 본 연구는 따오기의 sex-related gene과 Chromodomain Helicase DNA Binding Protein gene (CHD gene)을 가지고 polymerase chain reaction (PCR)을 수행하여 새로 태어난 따오기 유조의 성별을 확인하고자 하였다. 본 연구에서는 따오기의 성별 확인을 위해 PCR후 제한효소의 처리 방법과 P2과 P8를 이용한 PCR 방법을 실시하였을 때 더 정확한 결과가 나타남을 알 수 있었다. 그리고 CHD gene의 염기서열을 선행연구와 비교해 본 결과, 암컷의 염기서열에서 1~2 base pairs 차이가 나타남을 알 수 있었다.