• Title/Summary/Keyword: chromium steels

Search Result 78, Processing Time 0.027 seconds

FABRICATION OF GD CONTAINING DUPLEX STAINLESS STEEL SHEET FOR NEUTRON ABSORBING STRUCTURAL MATERIALS

  • Choi, Yong;Moon, Byung M.;Sohn, Dong-Seong
    • Nuclear Engineering and Technology
    • /
    • v.45 no.5
    • /
    • pp.689-694
    • /
    • 2013
  • A duplex stainless steel sheet with 1 wt.% gadolinium was fabricated for a neutron absorbing material with high strength, excellent corrosion resistance, and low cost as well as high neutron absorption capability. The microstructure of the as-cast specimen has typical duplex phases including 31% ferrite and 69% austenite. Main alloy elements like chromium (Cr), nickel (Ni), and gadolinium (Gd) are relatively uniformly distributed in the matrix. Gadolinium rich precipitates were present in the grains and at the grain boundaries. The solution treatment at $1070^{\circ}$ for 50 minutes followed by the hot-rolling above $950^{\circ}$ after keeping the sheet at $1200^{\circ}$ for 1.5 hours are important points of the optimum condition to produce a 6 mm-thick plate without cracking.

Stable and Unstable Crack Growth in Chromium Pre-alloyed Steel

  • Gerosa, Riccardo;Rivolta, Barbara;Tavasci, Adriano;Silva, Giuseppe;Bergmark, Anders
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.138-139
    • /
    • 2006
  • Sintered steels are materials characterized by residual porosity, whose dimension and morphology strongly affect the fatigue crack growth behaviour of the material. Prismatic specimens were pressed at $7.0\;g/cm^3$ from Astaloy CrM powder and sintered varying the sintering temperature and the cooling rate. Optical observations allowed to evaluate the dimensions and the morphology of the porosity and the microstructural characteristics. Fatigue tests were performed to investigate the threshold zone and to calculate the Paris law. Moreover $K_{Ic}$ tests were performed to complete the investigation. Both on fatigue and $K_{Ic}$ samples a fractographic analysis was carried out to investigate the crack path and the fracture surface features. The results show that the Paris law crack growth exponent is around 6.0 for $1120^{\circ}C$ sintered and around 4.7 for $1250^{\circ}C$ sintered materials. The same dependence to process parameters is not found for $K_{Ith}$.

  • PDF

Effects of Plasma Nitriding on the Surface Charcteristice Of Stainless Steels (스테인스강의 표면특성에 미치는 플라즈마질화의 영향)

  • 최한철;김관휴
    • Journal of the Korean institute of surface engineering
    • /
    • v.30 no.2
    • /
    • pp.144-154
    • /
    • 1997
  • Effects of plasma nitriding on the surface charcteristice of stainless steel(SS) were investjgated by utilizing wear tester, micro-hardness tester and potentiostat. The surface and corrosion morphology of plasma nitrided SS were analyzed by utilizing optical microscopy, SEM, XRD and WDX. It was found that plasma nitriding at $550^{\circ}C$, compared with $380^{\circ}C$, prodiced a good wear resistance and hardness as nitriding time increased, whereas Mo addition showd that were resistance and hardness decreased. Intergranular corrosion(IGC) resistance improved significantly in the case of plasma nirtrided SS containing 4.05wt% Mo at $380^{\circ}C$ because that nitrogen and Mo ast syner gidically to form a protective layer on surface which is responsible for the aggresive SCN-ion. Plasma nitrided at $550^{\circ}C$ decreased IGC as Mo content increased. Pitting improved in the plasma nitirided SS at Mo content incresased owing to retard a nucleation and growth of chromium carbide or nitirde in grain boundary.

  • PDF

The study on surface phenomena of chromizing sintered steels with low frictional and dry wear properties (저 마찰 건식 마모 특성을 가지는 크로마이징 처리 소결부품의 표면 현상에 관한 연구)

  • Park, Yong-Jin;Yeo, Guk-Hyeon;Kim, Sang-Gwon;Lee, Jae-Hun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.190-191
    • /
    • 2012
  • 철계 소결 부품은 성형의 용이성, 저렴한 가격, 특유의 기공성 입계조직으로 기능성 표면처리에 적합한 소재이다. 본 연구에서는 고온 부식 및 극심한 마모환경에 노출되는 발전소 터빈과 같은 부품의 표면처리에 주로 쓰이는 Pack-chromizing 법을 적용한 철계 소결부품의 내마모 특성을 알아보고자 한다. AFM 분석결과, Pack-chromizing 에 의해 Cr이 확산된 표층의 형상이 Peak-and-Valley 형태의 치밀한 dimple 구조로 변화된 것을 알 수 있었다. 또한, XRD 및 XPS 분석을 통해 chromium carbide 및 $Cr_2O_3$와 같은 고경도의 화합물 층이 형성됨을 알 수 있었다. 따라서, 이러한 dimple 구조를 띈 고경도의 화합물 층이 표면의 마찰계수를 저하시키는 주요 원인임을 본 연구에서 논하고자 한다.

  • PDF

Effects of Alloyed Carbon on the General Corrosion and the Pitting Corrosion Behavior of FeCrMnN Stainless Steels (FeCrMnN 계 스테인리스강의 일반부식 및 공식부식 거동에 미치는 고용 탄소의 영향)

  • Ha, Heon-Young;Lee, Tae-Ho;Kim, Sung-Joon
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.10
    • /
    • pp.780-789
    • /
    • 2011
  • The effects of alloyed carbon on the pitting corrosion, the general corrosion, and the passivity behavior of Fe18Cr10Mn0.4NxC (x=0~0.38 wt%) alloys were investigated by various electrochemical methods and XPS analysis. The alloyed carbon increased the general corrosion resistance of the FeCrMnN matrix. Carbon enhanced the corrosion potential, reduced the metal dissolution rate, and accelerated the hydrogen evolution reaction rate in various acidic solutions. In addition, carbon promoted the pitting corrosion resistance of the matrix in a chloride solution. The alloyed carbon in the matrix increased the chromium content in the passive film, and thus the passive film became more protective.

Applications of Micro-Droplet Cell to Study of Localized Corrosion Resistance of Stainless Steels (스테인리스강의 국부부식 저항성 연구에 미세방울셀의 응용)

  • Kim Sung-Yu;Kim Hee-San
    • Journal of the Korean Electrochemical Society
    • /
    • v.9 no.2
    • /
    • pp.70-76
    • /
    • 2006
  • Micro-droplet cell with free droplet as a micro-electrochemical technique has been limited to apply to electrochemical systems with high wetting properties such as an acidic solution and low grade stainless steels(Type 316L). By loading negative pressure to a droplet, control of droplet size, and use of hydrophobic gasket, the cell is modified to be allowed to use for electrochemical systems with high wetting properties. For giving the reliability of new cell, studies on local corrosion were conducted for three different systems-an acidic chloride solution and high chromium ferritic stainless steel, the other acidic chloride solution and type 316, and a neutral chloride solution and type 316. stainless steel. Firstly, the modified micro-droplet cell allows the anodic polarization curves in an acidic chloride solution to show the fact that the local corrosion of high chromium stainless steel near the $\alpha/\sigma$ interface is due to the Cr depleted zone. Secondly, the local anodic polarization test of type 316 L in the other acidic chloride solution can be successfully conducted in the cell. Furthermore, the local polarization curves help elucidating the corrosion of type 316 with $\delta-ferrite$ phase. Finally, the polarization curves of type 316 L in a neutral chloride solution indicates that the factor affecting the pitting corrosion resistance was inclusions rather than $\delta-ferrite$.

Effect of W Substitution on the Precipitation Behavior of χ and σ Phase in Super Duplex Stainless Steels (슈퍼 2상 스테인리스강에서 χ와 σ상의 석출거동에 미치는 W치환의 영향)

  • Han, Huyn-Sung;Kim, Seong-Hwi;Kang, Chang-Yong
    • Korean Journal of Materials Research
    • /
    • v.26 no.4
    • /
    • pp.200-206
    • /
    • 2016
  • This study was carried out to investigate the effect of W substitution on the precipitation behavior of ${\chi}$ and ${\sigma}$ phases in super duplex stainless steel. The ${\chi}$ phase was precipitated at the interface of ferrite / austenite phases and inside the ferrite phase at the initial stage of aging. With an increase in the aging time, the volume fraction of the ${\chi}$ phase increased, and then decreased with the transformation from the ${\chi}$ phase to the ${\sigma}$ phase. The ${\sigma}$ phase was precipitated later than the ${\chi}$ phase, and the volume fraction of x phase increased with the increase in the aging time. The ferrite phase was decomposed into the new austenite (${\gamma}2$) and ${\sigma}$ phases by aging treatment. The decomposition of the ferrite phase into the ${\gamma}2$ and ${\sigma}$ phases was retarded by W substitution for Mo. The volume fraction of the ${\chi}$ phase increased and that of the ${\sigma}$ phase decreased due to W substitution. The ${\chi}$ and ${\sigma}$ phases were intermetallic compounds, which had lower nickel concentration, and higher chromium, molybdenum, and tungsten concentrations. The ${\chi}$ phase has higher molybdenum and tungsten concentrations than those of the ${\sigma}$ phase. The amounts of chromium and nickel in the ${\chi}$ and ${\sigma}$ phases did not change, but these phases have higher concentrations of molybdenum and tungsten due to W substitution for Mo.

Effect of HAZ Softening Zone on Creep Rupture Properties of 1.0Cr-1.0Mo-0.25V Turbine Steels -Part II : Carbide Morphology- (1.0Cr-1.0Mo-0.25V 터어빈 로터강의 열영향부 연화층이 크립 파단 특성에 미치는 영향 - Part II : 탄화물 형태 -)

  • ;Indacochea, J. E.
    • Journal of Welding and Joining
    • /
    • v.15 no.1
    • /
    • pp.101-108
    • /
    • 1997
  • In repaired weldment of ASTM A-470 class 8 high pressure stream turbine rotor steel, creep rupture life was studied in relation with carbide morphology. Carbides were identified using carbide extraction replica method. A retired rotor has molybdenum rich carbide $M_2C$, lndacochea vanadium rich carbide $M_4C_3$, and chromium rich carbides $M_{23}C_6$and $M_7C_3$. Weldments ruptured at ICHAZ showed that some of carbides have been transformed into spherical types of coarsened carbides at ruptured area. Those carbides were revealed as molybdenum rich $M_6C$ carbide and they provided cavitation sites due to molybdenum depletion around $(M_6C)$ carbide. However coarsened $M_6C$ and $M_{23}C_6$ carbides were observed at ruptured area in case of ruptured at CGHAZ.

  • PDF

Surface Properties of Chromium Nitrided Carbon Steel as Separator for PEMFC (크롬질화처리한 저탄소강의 고분자 전해질 연료전지 분리판으로서의 표면특성)

  • Choi, Chang-Yong;Kang, Nam-Hyun;Nam, Dae-Geun
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.5
    • /
    • pp.173-178
    • /
    • 2011
  • Separator of stack in polymer electrolyte membrane fuel cell (PEMFC) is high cost and heavy. If we make it low cost and lighter, it will have a great ripple. In this study, low carbon steel is used as base metal of separator because the cost of low carbon steel is very cheaper commercial metal material than stainless steels, which is widely used as separator. Low carbon steel has not a good corrosion resistance. In order to improve the corrosion resistance and electrolytic conductivity, low carbon steel needs to be surface treated. We made Chromium electroplated layer of $5{\mu}m$, $10{\mu}m$ thickness on the surface of low carbon steel and it was nitrided for 2 hours at $1000^{\circ}C$ in a furnace with 100 torr nitrogen gas pressure. Cross-sectional and surface microstructures of surface treated low carbon steel are investigated using SEM. And crystal structures are investigated by XRD. Interfacial contact resistance and corrosion tests were considered to simulate the internal operating conditions of PEMFC stack. The corrosion test was performed in 0.1 N $H_2SO_4$ + 2 ppm $F^-$ solution at $80^{\circ}C$. Throughout this research, we try to know that low carbon steel can be replaced stainless steel in separator of PEMFC.

Corrosion and Nanomechanical Behaviors of 16.3Cr-0.22N-0.43C-1.73Mo Martensitic Stainless Steel

  • Ghosh, Rahul;Krishna, S. Chenna;Venugopal, A.;Narayanan, P. Ramesh;Jha, Abhay K.;Ramkumar, P.;Venkitakrishnan, P.V.
    • Corrosion Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.281-289
    • /
    • 2016
  • The effect of nitrogen on the electrochemical corrosion and nanomechanical behaviors of martensitic stainless steel was examined using potentiodynamic polarization and nanoindentation test methods. The results indicate that partial replacement of carbon with nitrogen effectively improved the passivation and pitting corrosion resistance of conventional high-carbon and high- chromium martensitic steels. Post-test observation of the samples after a potentiodynamic test revealed a severe pitting attacks in conventional martensitic steel compared with nitrogen- containing martensitic stainless steel. This was shown to be due to (i) microstructural refinement results in retaining a high-chromium content in the matrix, and (ii) the presence of reversed austenite formed during the tempering process. Since nitrogen addition also resulted in the formation of a $Cr_2N$ phase as a process of secondary hardening, the hardness of the nitrogen- containing steel is slightly higher than the conventional martensitic stainless steel under tempered conditions, even though the carbon content is lowered. The added nitrogen also improved the wear resistance of the steel as the critical load (Lc2) is less, along with a lower scratch friction coefficient (SFC) when compared to conventional martensitic stainless steel such as AISI 440C.