• Title/Summary/Keyword: chromium steels

Search Result 78, Processing Time 0.031 seconds

Evaluation of Corrosion Property of Welding Zone of Stainless Steel by Laser Welding (Laser 용접한 스테인리스강의 용접부위의 부식특성에 관한 평가)

  • Moon, Kyung-Man;Won, Jong-Pil;Park, Dong-Hyun;Kim, Yun-Hae;Lee, Myung-Hoon;Kim, Jin-Gyeong
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.4
    • /
    • pp.64-69
    • /
    • 2012
  • Laser welding was carried out on austenitic 304 (STS 304) and 22 APU stainless steels. In this case, the differences between the corrosion characteristics of the welding zones of the two stainless steels were investigated using electrochemical methods. The Vickers hardness values of the weld metal (WM) zones in both cases, the STS 304 and 22 APU stainless steels, showed relatively higher values than those of other welding zones. The corrosion current densities of the heat affected zone (HAZ) of the 22 APU and the base metal (BM) zone of the STS 304 exhibited the highest values compared to the other welding zones. It is generally accepted that when STS 304 stainless steel is welded using a general welding method, intergranular corrosion is often observed at the grain boundary because of its chromium depletion area. However, when laser welding was performed on both the STS 304 and 22 APU stainless steels, no intergranular corrosion was observed at any of the welding zones. Consequently, it is considered that the intergranular corrosion of stainless steel can be controlled with the application of laser welding.

Influence of Sintering Parameters on the Mechanical Performance of PM Steels Pre-alloyed with Chromium

  • Bergman, Ola;Lindqvist, Bjorn;Bengtsson, Sven
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.280-281
    • /
    • 2006
  • Powder grades pre-alloyed with 1.5-3 wt% chromium can be successfully sintered at the conventional temperature $1120^{\circ}C$ although well-monitored sintering atmospheres are required to avoid oxidation. Mechanical properties of the Cr-alloyed PM grades are enhanced by a higher sintering temperature in the range $1120-1250^{\circ}C$, due to positive effects from pore rounding, increased density and more effective oxide reduction. Astaloy CrM (Fe-3 wt% Cr-0.5 wt% Mo) with 0.6 wt% graphite added obtains an ultimate tensile strength of 1470 MPa and an impact strength of 31 J at density $7.1\;g/cm^3$, after sintering at $1250^{\circ}C$ followed by cooling at $2.5^{\circ}C/s$ and tempering.

  • PDF

Solidification Microstructures with Carbon Contents and Solidification Rates in Modified 12Cr-lMo Steels (개량 12Cr-1Mo강에서 탄소 함량 및 응고속도에 따른 응고 조직 형성 거동)

  • Eum C. Y;Lee J. H;Hur S. K;Chi B. H;Ryu S. H
    • Korean Journal of Materials Research
    • /
    • v.14 no.2
    • /
    • pp.101-109
    • /
    • 2004
  • The influences of solidification rates and carbon contents on the formation of the $\delta$-ferrite were studied by directional solidification in modified 12%Cr-l %Mo steels. Directional solidification experimental results showed that solidification microstructure depended on solidification rate and carbon content and chromium equivalent. The length of the mushy zone increased and the dendrite arm spacings decreased as the solidification rate increased. The volume fraction of the 8-ferrite decreased with increasing the solidification rate and carbon content. The volume fraction of the ferrite showed much higher at low solidification rates with planar and cellular interfaces than that at high solidification rates with dendritic interface. It is expected that macro-segregation of C causes lower C content at the lower solidification fraction in the directionally solidified sample, where lower C results in higher volume fraction of the ferrite. In order to estimate solidification microstructure in modified 12Cr-l%Mo steels, various solidification conditions, such as solidification rate, cooling rate, segregation, alloy composition, should be considered.

Corrosion Behaviors of Neutron-Irradiated Reactor Pressure Vessel Steels with Various Nickel and Chromium Contents (Ni과 Cr 함량이 다른 원자로 압력용기용 강의 중성자 조사 후 내식성 평가)

  • Choi, Yong
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.6
    • /
    • pp.293-297
    • /
    • 2019
  • Quasi-nano-hardness and corrosion behaviors of neutron-irradiated reactor pressure vessel (RPV) steels such as 15Ch2MFA (Ni<0.4, 2.520 n/㎠ (En>1.0 MeV) for 32 days. Quasi-nano-hardnesses of the 15Ch2MFA and 15Cr2NHFA steels were 183.8 and 179.8 Hv, respectively. Their corrosion rates and corrosion potentials were 2.4×10-4Acm-2, -515.9 mVSHE and 6.8×10-4 Acm-2, -523.6 mVSHE in NACE standard TM0284-96 solution at room temperature, respectively. 15Ch2MFA steel showed better quasi-nano-hardness and corrosion resistance than 15Cr2NHFA steel in this test condition.

Mechanical Properties for Major Parts in Agricultural Machinery (II) - Comparison for Suitability in Chemical Ingredient - (농업기계 주요부품의 기계적 성질에 관한 연구 (II) - 화학성분의 적합여부에 따른 비교 -)

  • 최규홍;권순홍
    • Journal of Biosystems Engineering
    • /
    • v.23 no.2
    • /
    • pp.187-194
    • /
    • 1998
  • This study was carried out to investigate mechanical properties o major part for agricultural machinery in Korea. The results are as follows ; 1. The mechanical Properties for heat resisting steel bars, alumium alloy castings, carbon steel for machine structural use, chromium molybdenum steels, high strength brass castings and carbon tool steels are proper for Korean standard. 2. The mechanical properties fir spring steels used to mould board, share of plow and blade of rotary are not suitable to Korean standard. Ⅰ think that a counterplan for quality rising is necessary such as supply of good quality materials and improvement of new materials in Korean agricultural machinery.

  • PDF

The Effect of Chemical Composition of Sintering Atmosphere on the Structure and Mechanical Properties of PM Manganese Steels with Chromium and Molybdenum Additions

  • Sulowski, Maciej;Cias, Andrzej;Stoytchev, Marin;Andreev, Tchavdar
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.561-562
    • /
    • 2006
  • The effect of chemical composition of the sintering atmosphere on density, microstructure and mechanical properties of Fe-3%Mn-(Cr)-(Mo)-0.3%C steels is described. Pre-alloyed Astaloy CrM and CrL, ferromanganese and graphite were used as the starting powders. Following pressing in a rigid die, compacts were sintered at 1120 and $1250^{\circ}C$ in atmospheres having different $H_2/N_2$ ratio and furnace cooled to room temperature. It has been found that the atmosphere composition has negligible effect on the as-sintered properties of the investigated materials.

  • PDF

Corrosion Prevention of Cr steels in $SO_2$ Atmosphere for Electrial Power Plants (화력발전소의 장수명화를 위한 Cr 강(鋼)의 고온 $SO_2$가스 부식저감 대책 기술)

  • Lee, Dong-Bok;Choe, Jeong-Ho
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2007.04a
    • /
    • pp.114-115
    • /
    • 2007
  • The corrosion characteristics of Cr steels were investigated to protect Cr steels from the SO2-gas corrosion in the coal-fired power plant. The samples tested were low alloy ferritic steel (ASTM T22, 23), martensitic steel (ASTM T91, 92, 122), and austenitic stainless steel (ASTM 347HFG). The corrosion tests were performed between 600oC and 1000oC in Ar + (0.2, 1)%SO2 gas for 100 hr. Chromium was quite beneficial to corrosion resistance, while iron was not. The corrosion resistance increased in the order of T22, T23, T91, T92, T122, and 347HFG.

  • PDF

Effect of Alloying Elements of Si, Mn, Ni, and Cr on Oxidation of Steels between 1050℃ and 1200℃ in Air (강의 대기 중 1050~1200℃의 산화에 미치는 합금원소 Si, Mn, Ni, Cr의 영향)

  • Lee, Dong Bok
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.4
    • /
    • pp.300-309
    • /
    • 2012
  • Low-carbon steels and a stainless steel were oxidized isothermally and cyclically between $1050^{\circ}C$ and $1200^{\circ}C$ for up to 100 min in air to find the effect of alloying elements of Si, Mn, Ni, and Cr on their oxidation. The most active alloying element of Si was scattered inside the oxide scale, at the scale-alloy interface and as internal oxide precipitates beneath the oxide scale. Manganese, which could not effectively improve the oxidation resistance, was rather uniformly distributed in the oxide scale. Nickel and chromium tended to present at the lower part of the oxide scale. Excessively thick porous scales formed on the low-carbon steels, whereas thin but non-adherent scales containing $Cr_2O_3$ formed on the stainless steel.

An Electrochemical Evaluation on Corrosion Properties of Welding Zone of Stainless Steel by GTAW (GTAW에 의한 스테인리스강 용접부위의 부식특성에 관한 전기화학적 평가)

  • Moon, Kyung-Man;Lee, Kyu-Hwan;Kim, Jin-Gyeong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.5
    • /
    • pp.678-685
    • /
    • 2010
  • GTAW was carried out to the austenitic 304(STS 304) and 22 APU stainless steels. In this case, difference of the corrosion characteristics of welded zone with STS 304 and 22APU mentioned above was investigated with electrochemical methods. Vickers hardness of weld metal in case of STS 304 (Hv-250) showed a relatively higher value than this of 22 APU(Hv-217). The corrosion current densities of weld metal of 22APU and heat affected zone of STS 304 were observed at the highest value compared to those of other welding zone respectively. This is probably because chromium depletion field due to chromium carbide formed to weld metal of 22APU and to heat affected zone of STS 304 can preferentially easily be corroded with more active anode than other fields. Consequently it is thought that application of the other welding methods like as laser welding or using of the optimum filler metals is necessary to improve the corrosion resistance of welding parts of these steels.

Intergranular Corrosion Mechanism of Slightly-sensitized and UNSM-treated 316L Stainless Steel

  • Lee, J.H.;Kim, K.T.;Pyoun, Y.S.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.226-236
    • /
    • 2016
  • 316L stainless steels have been widely used in many engineering fields, because of their high corrosion resistance and good mechanical properties. However, welding or aging treatment may induce intergranular corrosion and stress corrosion cracking etc. Since these types of corrosion are closely related to the formation of chromium carbide in grain boundaries, the alloys are controlled by methods such as the lowering of carbon content, solution heat treatment. This work focused on the intergranular corrosion mechanism of slightly-sensitized and Ultrasonic Nano-crystal Surface Modification (UNSM)-treated 316L stainless steel. Samples were sensitized for 1, 5, and 48 hours at $650^{\circ}C$ in $N_2$ gas atmosphere. Subsequently UNSM treatments were carried out on the surface of the samples. The results were discussed on the basis of the sensitization by chromium carbide and carbon segregation, the residual stress and grain refinement. Even though chromium carbide was not precipitated, the intergranular corrosion rate of 316L stainless steel was drastically increased with aging time, and it was confirmed that the increased intergranular corrosion rate of slightly-sensitized (not carbide formed) 316L stainless steel was due to the carbon segregation along the grain boundaries. However, UNSM treatment improved the intergranular corrosion resistance of aged stainless steels, and its improvement was due to the reduction of carbon segregation and the grain refinement of the outer surface, including the introduction of compressive residual stress.