• Title/Summary/Keyword: chromium depletion

Search Result 22, Processing Time 0.019 seconds

Intergranular Corrosion of Stainless Steel (스테인리스강 입계부식)

  • Kim, Hong Pyo;Kim, Dong Jin
    • Corrosion Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.183-192
    • /
    • 2018
  • Stainless steel can be classified into three categories depending on the microstructure as austenitic stainless steel, ferritic stainless steel and martensitic stainless steel. Generally, stainless steel is extremely resistant to corrosion as the name implies. However, under specific environments, susceptibility to localized corrosion such as pitting, intergranular corrosion and stress corrosion cracking increases. This paper reviewed the state of arts on intergranular corrosion mechanisms, countermeasures on intergranular corrosion and intergranular corrosion test methods. Intergranular corrosion is mostly related with chromium depletion at the grain boundary and sometimes with segregation of electroactive elements in solution annealed stainless steel. Countermeasures on intergranular corrosion include avoiding chromium depletion by heat treatment and the addition of alloying elements. Sensitization evaluation of stainless steel was performed either through acid immersion test or electrochemical test. The methods were standardized in (Japanese Industrial Standards). Even though are useful in evaluating the degree of sensitization for industrial purpose but do not provide detailed information about sensitization mechanism, cause and chromium profile.

OPTIMIZATION OF VARIABLES AFFECTING CORROSION RESISTANCE OF VACUUM SINTERED STAINLESS STEELS

  • Klar, Erhard;Samal, Prasan
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 1995.11a
    • /
    • pp.9-9
    • /
    • 1995
  • MATERIAL AND PROCESS VARIABLES THAT STRONGLY AFFECT THE CORROSION RESISTANCE OF PA4 STAINLESS STEELS, INCLUDE : ALLOY COMPOSITION, POWDER CLEANLINESS, NITROGEN, OXYGEN AND GARBON CONTENTS, CHROMIUM DEPLETION DUE TO SURFACE EVAPORATION AND SINTERED DENSITY. THE OPTIMUM PROCESS PARAMETERS FOR DELUBRICATION AND SINTERING THAT RESULT IN LOWEST LEVELS OF NITROGEN, OXYGEN AND CARBON AND MINIMUM LEVELS OF CHROMIUM DEPLETION WILL BE PRESENTED, FOR A NUMBER OF AUSTENTIC AND FERRITIC STAINLESS STEELS. THE EFFECT OF SINTERED DENSITY ON THE CORROSION RESISTANCE OF BOTH AUSTENITIC AND FERRITIC GRADES OF STAINLESS STEEL WILL ALSO BE COVERED.

  • PDF

Corrosion Characteristics of Welding Zones by Laser and TIG Welding of 304 Stainless Steel

  • Moon, Kyung-Man;Lee, Myung-Hoon
    • Corrosion Science and Technology
    • /
    • v.9 no.6
    • /
    • pp.294-299
    • /
    • 2010
  • Two types of welding methods were performed on austenitic 304 stainless steel: laser welding and TIG welding. The differences of the corrosion characteristics of the welded zones from the two welding methods were investigated with electrochemical methods, such as measurement of the corrosion potential, polarization curves, cyclic voltammogram, etc. The vickers hardness of all laser-welded zones (WM:Weld Metal, HAZ:Heat Affected Zone, BM:Base Metal) was relatively higher while their corrosion current densities exhibited a comparatively lower value than those which were TIG welded. In particular, the corrosion current density of the TIG-welded HAZ had the highest value among all other welding zones, which suggests that chromium depletion due to the formation of chromium carbide occurs in the HAZ, which is in the sensitization temperature range, thus it can easily be corroded with an active anode. Intergrenular corrosion was also observed at the TIG-welded HAZ and WM zones. Consequently, we can see that corrosion resistance of all austenitic 304 stainless steel welding zones can be improved via the use of laser welding.

Oxidation Behavior around the Stress Corrosion Crack Tips of Alloy 600 under PWR Primary Water Environment (PWR 1차측 환경에서 Alloy 600 응력부식균열 선단 부근에서의 산화 거동)

  • Lim, Yun Soo;Kim, Hong Pyo;Hwang, Seong Sik
    • Corrosion Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.141-150
    • /
    • 2012
  • Stress corrosion cracks in Alloy 600 compact tension specimens tested at $325^{\circ}C$ in a simulated primary water environment of pressurized water reactor were analyzed by analytical transmission electron microscopy and secondary ion mass spectroscopy (SIMS). From a fine-probe chemical analysis, oxygen was found on the grain boundary just ahead of the crack tip, and chromium oxides were precipitated on the crack tip and the grain boundary attacked by the oxygen diffusion, leaving a Cr/Fe depletion (or Ni enrichment) zone. The oxide layer inside the crack was revealed to consist of a double (inner and outer) layer. Chromium oxides existed in the inner layer, with NiO and (Ni,Cr) spinels in the outer layer. From the nano-SIMS analysis, oxygen was detected at the locations of intergranular chromium carbides ahead of the crack tip, which means that oxygen diffused into the grain boundary and oxidized the surfaces of the chromium carbides. The intergranular chromium carbide blunted the crack tip, thereby suppressing the crack propagation.

An Electrochemical Evaluation on Corrosion Properties of Welding Zone of Stainless Steel by GTAW (GTAW에 의한 스테인리스강 용접부위의 부식특성에 관한 전기화학적 평가)

  • Moon, Kyung-Man;Lee, Kyu-Hwan;Kim, Jin-Gyeong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.5
    • /
    • pp.678-685
    • /
    • 2010
  • GTAW was carried out to the austenitic 304(STS 304) and 22 APU stainless steels. In this case, difference of the corrosion characteristics of welded zone with STS 304 and 22APU mentioned above was investigated with electrochemical methods. Vickers hardness of weld metal in case of STS 304 (Hv-250) showed a relatively higher value than this of 22 APU(Hv-217). The corrosion current densities of weld metal of 22APU and heat affected zone of STS 304 were observed at the highest value compared to those of other welding zone respectively. This is probably because chromium depletion field due to chromium carbide formed to weld metal of 22APU and to heat affected zone of STS 304 can preferentially easily be corroded with more active anode than other fields. Consequently it is thought that application of the other welding methods like as laser welding or using of the optimum filler metals is necessary to improve the corrosion resistance of welding parts of these steels.

Carburization Characteristics of MERT Type KHR-45A Steel in Carbon Rich Environment (Carbon Rich 분위기에서의 KHR45강의 침탄특성 평가 연구)

  • Lim, Jae Kyun;Yang, Gimo;Ihm, Young Eon
    • Korean Journal of Materials Research
    • /
    • v.23 no.5
    • /
    • pp.293-298
    • /
    • 2013
  • In this study, an HP-mod. type(KHR-45A), which is used as a heater tube material in the pyrolysis process, was evaluated for its carburizing properties. It was confirmed from the microstructural observation of the tubes that the volume fraction of carbide increased and that the coarsening of Cr-carbide generated as a degree of carburization increased. The depth of the hardened layer, which is similar to the thickness of the carburized region of each specimen, due to carburization is confirmed by measurement of the micro-Vickers hardness of the cross section tube, which thickness is similar to that of the carburized region of each specimen. Two types of chromium carbides were identified from the EBSD (electron back-scattered diffraction) image and the EDS (energy-dispersive spectroscopy) analysis: Cr-rich $M_{23}C_6$ in the outer region and Cr-rich $M_7C_3$ in the inner region of tubes. The EDS analysis revealed a correlation between the ferromagnetic behavior of the tubes and the chromium depletion in the matrix. The chromium depletion in the austenite matrix is the main cause of the magnetization of the carburized tube. The method used currently for the measurement of the carburization of the tubes is confirmed; carburizing evaluation is useful for magnetic flux density measurement. The volume fraction of the carbide increased as the measuring point moved into the carburized side; this was determined from the calculation of the volume fraction in the cross-section image of the tubes. These results are similar to the trends of carburization measurement when those trends were evaluated by measurement of the magnetic flux density.

Effect of Silicon on Intergranular Corrosion Resistance of Ti-stabilized 11 wt% Cr Ferritic Stainless Steels (11 wt% 크롬이 함유된 Ti 첨가 페라이트스테인리스강의 입계부식에 미치는 규소의 영향)

  • Hyun, Youngmin;Kim, Heesan
    • Corrosion Science and Technology
    • /
    • v.12 no.6
    • /
    • pp.265-273
    • /
    • 2013
  • Ti-stabilized 11 wt% Cr ferritic stainless steels (FSSs) for automotive exhaust systems have been experienced intergranular corrosion (IC) in some heat-affected zone (HAZ). The effects of sensitizing heat-treatment and silicon on IC were studied. Time-Temperature-Sensitization (TTS) curves showed that sensitization to IC was observed at the steels heat-treated at the temperature lower than $650^{\circ}C$ and that silicon improved IC resistance. The sensitization was explained by chromium depletion theory, where chromium is depleted by precipitation of chromium carbide during sensitizing heat-treatment. It was confirmed with the results from the analysis of precipitates as well as the thermodynamical prediction of stable phases. In addition, the role of silicon on IC was explained with the stabilization of grain boundary. In other words, silicon promoted the formation of the grain boundaries with low energy where precipitation was suppressed and consequently, the formation of Cr-depleted zone was retarded. The effect of silicon on the formation of grain boundaries with low energy was proved by the analysis of coincidence site lattice (CSL) grain boundary, which is a typical grain boundary with low energy.

Evaluation of Corrosion Property of Welding Zone of Stainless Steel by Laser Welding (Laser 용접한 스테인리스강의 용접부위의 부식특성에 관한 평가)

  • Moon, Kyung-Man;Won, Jong-Pil;Park, Dong-Hyun;Kim, Yun-Hae;Lee, Myung-Hoon;Kim, Jin-Gyeong
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.4
    • /
    • pp.64-69
    • /
    • 2012
  • Laser welding was carried out on austenitic 304 (STS 304) and 22 APU stainless steels. In this case, the differences between the corrosion characteristics of the welding zones of the two stainless steels were investigated using electrochemical methods. The Vickers hardness values of the weld metal (WM) zones in both cases, the STS 304 and 22 APU stainless steels, showed relatively higher values than those of other welding zones. The corrosion current densities of the heat affected zone (HAZ) of the 22 APU and the base metal (BM) zone of the STS 304 exhibited the highest values compared to the other welding zones. It is generally accepted that when STS 304 stainless steel is welded using a general welding method, intergranular corrosion is often observed at the grain boundary because of its chromium depletion area. However, when laser welding was performed on both the STS 304 and 22 APU stainless steels, no intergranular corrosion was observed at any of the welding zones. Consequently, it is considered that the intergranular corrosion of stainless steel can be controlled with the application of laser welding.

Electrochemical Evaluation of Corrosion Property of Welding Zone of 304 Stainless Steel (304 스테인리스강의 용접부위의 부식특성에 관한 전기화학적 평가)

  • Moon, Kyung-Man;Kim, Yun-Hae;Kim, Jong-Do;Lee, Myung-Hoon;Kim, Jin-Gyeong
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.58-63
    • /
    • 2009
  • Two kinds of welding methods are used for austenitic 304 stainless steel: laser welding and TIG welding. The difference in the corrosion characteristics of the welded zone between these two welding methods was investigated using electrochemical methods, such as corrosion potential measurements, polarization curves, cyclic voltammograms, etc. The Vickers hardnesses of all the welded zones (WM: Weld Metal, HAZ: Heat Affected Zone, BM: Base Metal) showed relatively higher values in the case of laser welding than for TIG welding. Furthermore, the corrosion current densities of all the welding zones showed lower values compared to TIG welding. In particular, the corrosion current density of the HAZ with TIG welding had the highest value of all the welding zones, which suggests that chromium depletion due to the formation of chromium carbide appears in the HAZ, which is in the range of the sensitization temperature. Thus, it can easily be corroded with a more active anode. Consequently, we found that the corrosion resistance of all of the welding zones for austenitic 304 stainless steel could apparently be improved by using Laser welding.

Effects of Temperatures and Conditioning Methods on Fixation of CCA-Type Band CCFZ Preservatives in Treated Wood (양생온도(養生溫度)와 방법(方法)이 CCA-Tyoe B와 CCFZ 방부처리재(防腐處理材)의 양생(養生)에 미치는 영향(影響))

  • Kim, Gyu-Hyeok;Ra, Jong-Bum
    • Journal of the Korean Wood Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.33-38
    • /
    • 1995
  • The rates of fixation of CCA-Type B and CCFZ in blocks of radiata pine sapwood were compared at various temperatures and conditioning methods (drying and nondrying conditioning). Also the time required to proper fixation of preservative components in the treated wood was estimated. Fixation was monitored by the rates of depletion of free hexavalent chromium in the cell lumens in the teated blocks. The rate of preservative fixation in wood was highly temperature dependent. The fixation rate was considerably accelerated by means of heating and complete fixation of hexavalent chromium was achieved within about 12 hours by heating at $60^{\circ}C$. The moisture content of treated wood during fixation apparently played an important role in the fixation process. The fixation rate of treated wood conditioned in nondrying conditions was much more faster than that of treated wood conditioned in drying conditions. particularly when the moisture content of treated wood was below fiber saturation point. Time required to full fixation could be predicted successfully using the fixation temperatures applied since the correlation between the fixation temperature and the fixation time was excellent. regardless of conditioning methods.

  • PDF