• Title/Summary/Keyword: choke filter

Search Result 16, Processing Time 0.028 seconds

Three-Phase Common-Mode Active EMI Filters for Induction Motor Drive Applications

  • Tarateeraseth, Vuttipon
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.871-878
    • /
    • 2018
  • In this paper, the conducted EMI reduction performances of active feed-forward current-sensing current-actuation (CSCA) and voltage-sensing current-actuation (VSCA) filters for a three-phase induction motor drive system are evaluated by experiments. For comparison purposes, the conducted EMI (CM emission, DM emission and total emission) of a three-phase induction motor drive with a conventional CM choke, a conventional CM choke in series with an active VSCA filter, and an active CSCA filter (where the CM choke was modified and used as a sensing current transformer) were compared to the case of a system without any filter inserted. Experimental results show that the active CSCA and VSCA filters can improve the CM reduction performance of the conventional CM choke by about 5 dB especially at low-frequencies. However, for DM comparisons, it shows that there is no different between cases with and without filters inserted.

A Study on the Characteristic Analysis of Hybrid Choke Coil suitable for LED-TV SMPS (LED-TV용(用) 전원장치에 적합한 Hybrid 초크 코일의 특성 해석에 관한 연구)

  • Kim, Jong-Hae;Kim, Hee-Sung;Won, Jae-Sun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.3
    • /
    • pp.32-43
    • /
    • 2014
  • This paper presents the intra capacitance modeling according to the winding method, section bobbin and coil structure for hybrid choke coil capable of the EMI attenuation of broad bands from lower frequency bands to higher frequency bands and high frequency type common-mode choke coil capable of the EMI attenuation of high frequency band used in the EMI Block of LED-TV SMPS. In case of high frequency type CM choke coil, it can be explained the parasitic capacitance of A type and section bobbin type winding methods among them is much smaller than the other. The first resonant frequency of the proposed CM choke coil tends to increase as the parasitic capacitance becomes small and its impedance characteristics also show improved performance as the first resonant frequency increases. In case of hybrid choke coil using rectangular copper wire, it has investigated its parasitic capacitance compared to CM choke coil of conventional toroidal type becomes small. Also it has confirmed through the experiment results that CE margin and RE margin in frequency bands 0.5MHz to 5MHz and 30MHz to 200MHz are respectively 10dB and 15dB greater than that of conventional type in case of one stage EMI filter structure adopting hybrid choke coil compared to two stage EMI Filter structure using two of each CM choke coil used in the lower and higher frequency bands or two of CM choke coil used in only the lower frequency bands. In the future, the hybrid choke coil and CM choke coil of high frequency type show it can be practically used in not only LED/LCD-TV SMPS but also several applications such as LED Lighting, Laptop Adapter, Server Power Supply and so on.

Equivalent Parallel Capacitance Cancellation of Common Mode Chokes Using Negative Impedance Converter for Common Mode Noise Reduction

  • Dong, Guangdong;Zhang, Fanghua
    • Journal of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.1326-1335
    • /
    • 2019
  • Common mode (CM) chokes are a crucial part in EMI filters for mitigating the electromagnetic interference (EMI) of switched-mode power supplies (SMPS) and for meeting electromagnetic compatibility standards. However, the parasitic capacitances of a CM choke deteriorate its high frequency filtering performance, which results in increases in the design cycle and cost of EMI filters. Therefore, this paper introduces a negative capacitance generated by a negative impedance converter (NIC) to cancel the influence of equivalent parallel capacitance (EPC). In this paper, based on a CM choke equivalent circuit, the EPCs of CM choke windings are accurately calculated by measuring their impedance. The negative capacitance is designed quantitatively and the EPC cancellation mechanisms are analyzed. The impedance of the CM choke in parallel with negative capacitances is tested and compared with the original CM choke using an impedance analyzer. Moreover, a CL type CM filter is added to a fabricated NIC prototype, and the insertion loss of the prototype is measured to verify the cancellation effect. The prototype is applied to a power converter to test the CM conducted noise. Both small signal and EMI measurement results show that the proposed technique can effectively cancel the EPCs and improve the CM filter's high frequency filtering performance.

Q-band Beam-Lead Single-ended Mixer (Q-band 빔 리드 Single ended 믹서)

  • 이창훈;한석태
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.1
    • /
    • pp.26-32
    • /
    • 1994
  • In this paper, using the newly developed GaAs Schottky beam-lead diode made by Marconi company, we have developed and evaluated the waveguide type single-ended mixer at Q-band. The various components of the mixer were separately designed and optimized using the Super-Compact software. These studies included the design of the step waveguide impedance transformer and the RF-choke filter, and the optimization of a high and low impedance for the RF-choke filter. Moreover, this RF-choke filter pattern included a section to reject the second harmonic frequency of the RF signal. Finally, this Q-band mixer with 1.4GHz/400MHz IF frequency exhibits an average conversion loss of 5.3 dB over 33-50GHz bandwidth.

  • PDF

A Coaxial Band Rejection Filter using a Quarter Wavelength Choke Structure (4분의 1 파장 초크 구조를 이용한 동축형 대역억제필터)

  • Han, Dae Hyun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.3
    • /
    • pp.313-318
    • /
    • 2018
  • A coaxial band rejection filter is designed and fabricated for a beam interacting cavity. The proposed filter has a quarter wavelength choke for the dominant mode of the cavity. The equivalent circuit of the coaxial band rejection filter is presented and the ABCD parameter os each part is derived to obtain the ABCD parameter of the entire filter. The scattering matrix was obtained from the ABCD matrix and the was simulated by MATLAB using the obtained scattering matrix. The coaxial band rejection filter structure was simulated using HFSS, and the results confirmed the simulation using the equivalent circuit was useful. The designed coaxial band rejection filter was fabricated with 6-1/8 flange. The fabricated filter was measured using a transition from 6-1/8 flange to N-type flange. The insertion loss of the fabricated filter is greater than 25 dB in the dominant mode of the cavity and less than 0.25 dB in the first higher order mode. The measurement results are in good agreement with the simulated results and meet the design specification.

A Study on the Characteristics Analysis of Hybrid Choke Coil with Reduced Parasitic Capacitance suitable for LED-TV SMPS (LED-TV용(用) 전원장치에 적합한 기생 커패시턴스 저감형 Hybrid 초크 코일의 특성 해석에 관한 연구)

  • Lee, Jong-Hyeon;Kim, Gu-Yong;Kim, Jong-Hae
    • Journal of IKEEE
    • /
    • v.22 no.1
    • /
    • pp.185-188
    • /
    • 2018
  • This paper describes the parasitic capacitance modeling according to the coil structure, section bobbin and winding method for hybrid choke coil with reduced parasitic capacitance capable of the EMI attenuation of broad bands from lower frequency to higher frequency applied in the EMI attenuation filter of LED-TV SMPS. Especially, the hybrid choke coil with reduced parasitic capacitance($C_p$) proposed in this paper can reduces the parasitic capacitance($C_p$) by adopting the winding methods of rectangular copper wire, compared to the conventional common mode choke coil with the winding method of automatic type. The first resonant frequency of the proposed hybrid choke coil has a tendency to increase as the parasitic capacitance is smaller and its impedance characteristics, especially in the high frequency bands, improves as the first resonant frequency increases. In the future, the proposed hybrid choke coil with reduced parasitic capacitance shows it can be actually utilized in not only LED-TV SMPS but also various applications such as LED Lighting, Note-PC Adapter, and so forth.

A Method for Reducing the Residual Voltage of Hybrid SPD Circuit Using Choke Coil (초크코일을 이용한 SPD 조합회로의 잔류전압 저감기법)

  • Cho, Sung-Chul;Eom, Ju-Hong;Lee, Tae-Hyung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.8
    • /
    • pp.96-101
    • /
    • 2007
  • Gas Discharge Tubes (GDTs) are widely used as surge protectors for communication applications due to their small internal capacitance. In these days, however, they are mostly used in combined configurations, because the sparkover voltage required to initiate the discharge process in the GDTs and the time taken for arc formation process can be large enough to damage to sensitive circuits. For GDTs with a considerably high initial residual voltage, we should limit the peak voltage using a TVS or filter. We made a hybrid SPD circuits of common-mode type and differential-mode type with the filter using common-mode choke. Also, we applied lightning impulse voltage and ring wave voltage which frequency bandwidth are different each other and verified the characteristics of hybrid SPD circuits according to waveshapes. We describe how the applied SPDs operate in protection process steps with the actual data obtained from the residual voltage measurement at each step. The experiment results show that the surge voltage reduction with the choke coil is more effective in differential-mode circuit than in common-mode circuit.

A Method for Reducing the Residual Voltage of Hybrid SPD Circuit Using Choke Coils (초크코일을 이용한 SPD 조합회로의 잔류전압 저감기법)

  • Cho, Sung-Chul;Eom, Ju-Hong;Lee, Tae-Hyung
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.05a
    • /
    • pp.250-253
    • /
    • 2007
  • Gas Discharge Tubes (GDTs) are widely used as surge protectors for commnuication applications due to their small internal capacitance. In these days, however, they are mostly used in combined configurations, because the activation voltage required to initiate the discharge process in the GDTs for sufficient amount of time can be large enough to damage surge-sensitive protected circuits. For GDTs with a considerably high initial over-voltage value, we should limit the peak voltage using a TVS or filter. As for ZnO varistors, even though their performance for voltage restriction is excellent, their applications in high-frequency commnuication circuits have been limited because of higher internal capacitance when compared to the GDTs. In order to develop a surge protector for commnuication applications by taking advantages of these two devices, we built a combination circuit that connects a GDT and a ZnO varistor along with a choke coil in common and differential modes. We describe how the applied SPDs operate in protection process steps with the actual data obtained from the residual voltage measurements at each step. The experiment results show that the surge voltage restriction with the choke coil is more effective in 100 [kHz] RingWave voltage than in lightning impulse voltage.

  • PDF

Method for High-Frequency Modeling of Common-Mode Choke (공통모드 초크의 간단한 고주파 모델링 기법)

  • Jung, Hyeonjong;Yoon, Seok;Kim, Yuseon;Bae, Seok;Lim, Yeongseog
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.12
    • /
    • pp.964-973
    • /
    • 2017
  • In this paper, we analyze the effects of parasitic components of common-mode choke on the common mode and differential mode in a wide band, and we propose a simple method for high-frequency modeling. Common mode and differential mode 2-port networks were configured and the S-parameters in each mode were measured using a network analyzer. Equivalent circuit elements were extracted from the measured results to model a high-frequency equivalent circuit, and the validity was verified by comparing the measured S-parameters with the simulation results.

A method for reducing the residual voltage of hybrid SPD circuit using choke coils (초크코일을 이용한 SPD 조합회로의 잔류전압 저감기법)

  • Lee, Tae-Hyung;Jo, Sung-Chul;Han, Hoo-Suk;Eom, Ju-Hong
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1488-1489
    • /
    • 2006
  • Gas Discharge Tubes (GDTs) are widely used as surge protectors for communication applications due to their small internal capacitance. In these days, however, they are mostly used in combined configurations, because the activation voltage required to initiate the discharge process in the GDTs for sufficient amount of time can be large enough to damage surge-sensitive protected circuits. For GDTs with a considerably high initial over-voltage value, we should limit the peak voltage using a TVS or filter. As for ZnO varistors, even though their performance for voltage restriction is excellent their applications in high-frequency communication circuits have been limited because of higher internal capacitance when compared to the GDTs. In order to develop a surge protector for communication applications by taking advantages of these two devices, we built a combination circuit that connects a GDT and a ZnO varistor along with a choke coil in common and differential modes. We describe how the applied SPDs operate in protection process steps with the actual data obtained from the residual voltage measurements at each step. The experiment results show that the surge voltage restriction with the choke coil is more effective in differential mode than in common mode.

  • PDF