• Title/Summary/Keyword: choice properties

Search Result 283, Processing Time 0.025 seconds

A Study on Electrical Properties of Pressboard Insulating Paper (프레스 보드 절연지의 전기물성에 관한 연구)

  • Kim, G.Y.;Eom, S.W.;Ahn, M.S.;Kang, D.P.;Yun, M.S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1993.05a
    • /
    • pp.35-38
    • /
    • 1993
  • Pressboard is used for insulation oil-immersed equipment such as transformer. It's low cost, good electrical properties when immersed in oil, ease of storage and installation, and general reliability have made it virtually a universal choice. This study has examined fabricating specimen and specimen characteristics of pressboard.

  • PDF

An Elastic Deformation Model of High-speed Spindle Units

  • Zverev Igor Aexeevich;Eun In-Ung;Hwang Young-Kug;Chung Won-Jee;Lee Choon-Man
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.3
    • /
    • pp.39-46
    • /
    • 2006
  • This paper presents an elastic deformation model of a spindle unit (S/U), which takes into account the non-linear properties of high-speed ball bearings (particularly the effect of high rotational speed). For this, a software for the estimation of the S/U elastic deformation properties was developed and intended for use by S/U designers. A computer aided analysis of the model using the developed software was carried out and experiments showed the significant effect of rotational speed, cutting load and bearing axial preload, and showed some new phenomena, from which the criteria for the choice of bearing axial preload is given.

Dynamic buckling response of temperature-dependent functionally graded-carbon nanotubes-reinforced sandwich microplates considering structural damping

  • Shokravi, Maryam;Jalili, Nader
    • Smart Structures and Systems
    • /
    • v.20 no.5
    • /
    • pp.583-593
    • /
    • 2017
  • This research deals with the nonlocal temperature-dependent dynamic buckling analysis of embedded sandwich micro plates reinforced by functionally graded carbon nanotubes (FG-CNTs). The material properties of structure are assumed viscoelastic based on Kelvin-Voigt model. The effective material properties of structure are considered based on mixture rule. The elastic medium is simulated by orthotropic visco-Pasternak medium. The motion equations are derived applying Sinusoidal shear deformation theory (SSDT) in which the size effects are considered using Eringen's nonlocal theory. The differential quadrature (DQ) method in conjunction with the Bolotin's methods is applied for calculating resonance frequency and dynamic instability region (DIR) of structure. The effects of different parameters such as volume percent of CNTs, distribution type of CNTs, temperature, nonlocal parameter and structural damping on the dynamic instability of visco-system are shown. The results are compared with other published works in the literature. Results indicate that the CNTs have an important role in dynamic stability of structure and FGX distribution type is the better choice.

Wettability of graphene and its control (그래핀의 습윤성 및 제어기술)

  • Son, Jangyup
    • Ceramist
    • /
    • v.23 no.2
    • /
    • pp.166-177
    • /
    • 2020
  • The wettability is one of the most fundamental properties of a material surface. Especially, graphene, two-dimensional (2D) surface material in which all the carbon atoms are exposed to the environment, is the best choice of template to study about the surface wettability. However, most studies have focused on the mechanical and electrical properties of graphene, not the surface wettability. This review article covers the wettability of graphene and provides recent research regarding the engineering of the surface wettability. This paper would be helpful for researchers working in this field and provides perspective for future carbon-liquid interacting applications.

Quinone-Diamine Adduct as a High Performance Resin for Coatings (퀴논-디아민 부가물계 고성능 도료용 수지)

  • Lee, Chi-Giu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.1-10
    • /
    • 1996
  • We have prepared diamine-benzoquinone polymer which was known to excellent water proofing, high adhesion strength and good anti-corrosive effect, and have investigate with the possibility of application as a high performance resin for coatings. First of all, the reactivity of diamine-benzoquinone has been described an example of polymer reaction with research trend. The polymer reaction was divided into the polymerization with several diamine-benzoquinone and urethane group. The synthetic resin was shown a high solubility. In case of polymer containing urethane, water absorption content, water proofing and mechanical properties were controlled with the content, water proofing and mechanical properties were controlled with the content of quinone. It was shown that an use of choice was a possible result for various coatings. Diamine-quinone polymer can be used as a new resin for coatings. In addition, the polymer containing a functional group was shown a useful applicability as a high performance resin.

What is sensory and consumer science? ('감각·소비자과학'이란?)

  • Lee, Hye-Seong
    • Food Science and Industry
    • /
    • v.52 no.1
    • /
    • pp.2-10
    • /
    • 2019
  • Sensory and consumer science is one of the four core sciences in food science training. In early years, this field of studies are focused on providing food technologists information of sensory attributes of food for quality control and product optimization, and referred as sensory evaluation or sensory science interchangeably. Yet, during the last decades, its scope has been much broadened looking at sensory properties of food not just as product attributes but consumer-perceived properties, emphasizing human experience. Attentions are increased for sensory fundamentals(sensory psychology and physiology) and multidisciplinary integration of theories and measurement methods for improving satisfaction of consumers' sensory experience and promoting healthy eating and wellbeing. The Sensory Evaluation(SE) division of Korean Society of Food Science and Technology(KoSFoST) has recently changed its name to Sensory and Consumer Science(SCS) division in order to address such evolution of the field and sensory professional's role.

HYPERBOLIC AND SPHERICAL POWER OF A CIRCLE

  • Young Wook Kim;Sung-Eun Koh;Hyung Yong Lee;Heayong Shin;Seong-Deog Yang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.2
    • /
    • pp.507-514
    • /
    • 2023
  • Suppose that a line passing through a given point P intersects a given circle 𝓒 at Q and R in the Euclidean plane. It is well known that |PQ||P R| is independent of the choice of the line as long as the line meets the circle at two points. It is also known that similar properties hold in the 2-sphere and in the hyperbolic plane. New proofs for the similar properties in the 2-sphere and in the hyperbolic plane are given.

Modeling and Characterization of Steam-Activated Carbons Developed from Cotton Stalks

  • Youssef, A.M.;Hassan, A.F.;Safan, M.
    • Carbon letters
    • /
    • v.14 no.1
    • /
    • pp.14-21
    • /
    • 2013
  • Physically and chemically activated carbons (ACs) exhibited high adsorption capacities for organic and inorganic pollutants compared with other adsorbents due to their expanded surface areas and wide pore volume distribution. In this work, seven steam-ACs with different burn-off have been prepared from cotton stalks. The textural properties of these sorbents were determined using nitrogen adsorption at $-196^{\circ}C$. The chemistry of the surface of the present sorbents was characterized by determining the surface functional C-O groups using Fourier transform infrared spectroscopy, surface pH, $pH_{pzc}$, and Boehm's acid-base neutralization method. The textural properties and the morphology of the sorbent surface depend on the percentage of burn-off. The surface acidity and surface basicity are related to the burn-off percentage. A theoretical model was developed to find a mathematical expression that relates the % burn-off to ash content, surface area, and mean pore radius. Also, the chemistry of the carbon surface is related to the % burn-off. A mathematical expression was proposed where % burn-off was taken as an independent factor and the other variable as a dependent factor. This expression allows the choice of the value of % burn-off with required steam-AC properties.

NUCLEAR ENERGY MATERIALS PREDICTION: APPLICATION OF THE MULTI-SCALE MODELLING PARADIGM

  • Samaras, Maria;Victoria, Maximo;Hoffelner, Wolfgang
    • Nuclear Engineering and Technology
    • /
    • v.41 no.1
    • /
    • pp.1-10
    • /
    • 2009
  • The safe and reliable performance of fusion and fission plants depends on the choice of suitable materials and an assessment of long-term materials degradation. These materials are degraded by their exposure to extreme conditions; it is necessary, therefore, to address the issue of long-term damage evolution of materials under service exposure in advanced plants. The empirical approach to the study of structural materials and fuels is reaching its limit when used to define and extrapolate new materials, new environments, or new operating conditions due to a lack of knowledge of the basic principles and mechanisms present. Materials designed for future Gen IV systems require significant innovation for the new environments that the materials will be exposed to. Thus, it is a challenge to understand the materials more precisely and to go far beyond the current empirical design methodology. Breakthrough technology is being achieved with the incorporation in design codes of a fundamental understanding of the properties of materials. This paper discusses the multi-scale, multi-code computations and multi-dimensional modelling undertaken to understand the mechanical properties of these materials. Such an approach is envisaged to probe beyond currently possible approaches to become a predictive tool in estimating the mechanical properties and lifetimes of materials.

A Study on Chemical Modification Effect of Papermaking Fiber by Cyanoethylation (Cyanoethyl화에 의한 제지용 섬유의 화학적 개질효과에 관한 연구)

  • Yoon, Se-Young;Jo, Byoung-Muk;Oh, Jung-Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.56-64
    • /
    • 1997
  • Since there are three hydroxyl groups on each anhydroglucose ring of the cellulose, the renewable resources, we can get various functional papers by the chemical modification of cellulose. The reaction involving the introduction of the ${\beta}$-cyanoethyl ($-CH_2-CH_2$-CN) group into organic substances containing reactive hydrogen atoms is known as cyanoethylation. Cellulose reacts with acrylonitrile in the presence of strong alkalis in a typical manner of primary and secondary alcohols to form cyanoethyl ethers. In cyanoethylation, important factors of reaction are temperature, concentration of the NaOH, and addition rate of acrylronitrile. FT-IR spectra of cyanoethyl group was confirmed at $2250cm^{-1}$, which corresponds the introduction of aliphatic nitrile group. Effect of cyanoethyl DS(degree of substitution) on strength properties was resulted that cyanoethylated BKP of DS 0.04 appeared to be the best choice for overall strength properties. Also, excellent thermal stability in aging characteristics was obtained.

  • PDF