• Title/Summary/Keyword: chlorophyll pigment

Search Result 154, Processing Time 0.021 seconds

Content Changes of Pigments and Antioxidants of Dried Samnamul (Aruncus dioicus) and Daraesoon (Actinidia arguta) during Rehydration and High Temperature Cooking (건조 삼나물과 다래순의 재수화와 고온 가열조리 중 색소와 산화방지성분의 함량 변화)

  • An, Haechun;Choe, Eunok
    • Korean journal of food and cookery science
    • /
    • v.32 no.4
    • /
    • pp.383-389
    • /
    • 2016
  • Purpose: This study was conducted to evaluate the effect of rehydration and subsequent heating at high temperature on the pigments and antioxidants of dried samnamul (Aruncus dioicus) and daraesoon (Actinidia arguta). Methods: Rehydration included 16 h-soaking in cold water, and 30 min-boiling and 1 h-infusion in water. Rehydrated samnamul and daraesoon were heated at $180^{\circ}C$ for 10 or 20 min with or without perilla oil addition (10%) for cooking. Pigments and antioxidants were determined by HPLC and spectrophotometry. Results: Rehydration caused decreases in pigment and polyphenol contents, but increase in tocopherol content. Cooking by heating without addition of perilla oil resulted in increases in chlorophyll and carotenoid contents, but decreases in polyphenol and tocopherol contents. Decrease in tocopherol content by heating at $180^{\circ}C$ was reversed by the addition of perilla oil. Conclusion: This study strongly suggested that cooking of samnamul and daraesoon at $180^{\circ}C$ with perilla oil could improve color, texture, and potential health functionality by recovering the loss of antioxidants and pigments with antioxidant activity.

Growth regulation of cow1 rice mutant seedlings by blue light

  • Goh, Chang-Hyo;Ko, Suk-Min;Park, Hee-Yeon;Kim, Yeon-Ki;Kim, Yong-Woo;Kim, Young-Joo;Sun, Hyeon-Jin;Moon, Yong-Hwan;Lee, Hyo-Yeon
    • Journal of Plant Biotechnology
    • /
    • v.37 no.4
    • /
    • pp.465-471
    • /
    • 2010
  • We assessed whether the cow1 mutant defects are associated with growth of Tos17 and T-DNA insertional rice in blue light (BL). Growth of oscow1 mutants which encoded a member of the YUCCA protein family was retarded in BL. Root to shoot ratios of the mutants were reduced about 2 times lower in the absence of NAA and about 2.5 times lower in the presence of NAA; the shoot growth was not significantly changed by NAA addition. Photosynthetic activity of the mutants was however inhibited in high light. Pigment analysis showed significant difference between wild-type (Chl a:b = 3.02) and mutants (3.84). Carotenoid contents of the mutants were also decreased considerably, implying the involvement of cow1 in pigment formation. These findings lead us to suggest that the growth retardation of oscow1 mutant plants by BL results from the difference of photosynthetic activity in part.

Optimum Light Intensity and Fertilization Effects on Physiological Activities of Forsythia saxatil (산개나리의 생리적 활성에 대한 최적 광도 조건과 시비 효과)

  • Kim, Gil Nam;Han, Sim-Hee;Kim, Du Hyun;Yun, Chung-Weon;Shin, Soo Jeong
    • Journal of Korean Society of Forest Science
    • /
    • v.102 no.3
    • /
    • pp.372-381
    • /
    • 2013
  • The leaf growth and physiological characteristics of Forsythia saxatilis were investigated under different relative light intensities (RLI) and fertilization levels in order to find out the optimum environmental conditions for in-situ restoration. RLI and fertilization were four levels (30%, 43%, 63% of full sun and full sun) and three levels (non-fertilization, 2 times and 3 times of average forest soil in Korea), respectively. According to the increase of fertilization level under all RLI, leaf area increased and leaf dry weight and the ratio of leaf dry weight to leaf area decreased. As the fertilization level increased, photosynthetic pigment contents such as chlorophyll a, b and carotenoid under all RLI decreased. And pigment contents were the highest under full sun in the same fertilization level. Foliar nitrogen content under fertilization was higher than that under non-fertilization, and chlorophyll/nitrogen ratio decreased with the increase of fertilization level under all RLI. The increase of photosynthetic rate was observed with the increase of fertilization level at 63% of RLI and full sun, and dark respiration rate under fertilization was lower than under non-fertilization. Apparent quantum yield was lower at non-fertilization than that of fertilization, and it was highest at 63% of RLI under the same fertilization level. In conclusion, leaf growth and physiological characteristics of F. saxatilis could be improved under higher light conditions and fertilization.

Chlrorophylls and their Degradation Products using High Performance Liquid Chromatography (HPLC), with Data from Suspended and Sinking Particulate Matter in Prydz Bay, Antarctica

  • Noh, Il
    • Journal of Navigation and Port Research
    • /
    • v.35 no.4
    • /
    • pp.323-334
    • /
    • 2011
  • Suspended and sinking particles were collected in austral summer during ODP Leg 119 to the Indian Ocean sector of the Antarctic Ocean. Field work was carried out at four sampling sites in Prydz Bay. Two of these sites were located in the Outer Bay, and two in the Inner Bay. At the four locations, a total of ten deployments of a sediment trap array were made. The concentrations of chlorophylls and their degradation products both in suspended and sinking particulate matter in Prydz Bay were analyzed using HPLC. Chlorophylls a and c were the dominant algal pigments both in suspended and sinking particles. Because of the abundance of fecal pellets at Site 740, the mean fluxes at 200 m averaged 6 fold greater than that at 50 m. This implies that a dense swarm of zooplankters, presumably large copepods and/or salps, may "feed and excrete" mainly in between 100-200 m depths at this site, closest to land in Prydz Bay. Interestingly, The flux of phaeophorbide a was generally similar in magnitude to that of chlorophyll a throughout the study areas. This is an evidence that materials escaping from near-surface regions in austral summer derive mainly from the gazing of zooplankters. "New production" from sediment-trapped CHL pigment fluxes in Prydz Bay was estimated using f-ratio of 0.15, ranging from 520 to $1,605\;{\mu}gC\;m^{-2}\;day^{-1}$.

The Study of Cyanobacterial Flora from Geothermal Springs of Bakreswar, West Bengal, India

  • Debnath, Manojit;Mandal, Narayan Chandra;Ray, Samit
    • ALGAE
    • /
    • v.24 no.4
    • /
    • pp.185-193
    • /
    • 2009
  • Geothermal springs in India, formed as a result of volcanic or tectonic activities, are characterized by high temperature and relatively abundant reduced compounds. These thermal springs are inhabited by characteristic thermophilic organisms including cyanobacteria. Cyanobacteria are among the few organisms that can occupy high temperature aquatic environments including hot springs. In alkaline and neutral hot springs and streams flowing from them cyanobacteria can form thick colourful mats that exhibit banding patterns. The present investigation involves study of mat forming cyanobacterial flora from hot springs located in Bakreswar, West Bengal, India. The important species found are Synechococcus bigranulatus, S. lividus, Gloeocapsa gelatinosa, G. muralis, Phormidium laminosum, P. frigidum, Oscillatoria princes, O. fragilis, Lyngbya lutea, Pseudanabaena sp., Calothrix thermalis, and Fischerella thermalis. Their distribution pattern in relation to physico-chemical parameters of spring water has also been studied. Three cyanobacterial strains of the above mentioned list were grown in culture and their pigment content and nitrogen fixing capacity were also studied. Nitrogen fixing capacities of Calothrix thermalis, Nostoc sp. (isolated in culture) and Fischerella thermalis are 5.14, 0.29, and 2.60 n mole $C_2H_4/{\mu}g$ of Chl-${\alpha}$/hr respectively. Carotenoid : Chlorophyll-${\alpha}$ ratio of four mat samples collected from Kharkunda, Suryakunda, Dudhkunda and bathing pool are 2.45, 1.60, 1.48, and 1.34, respectively. Higher value of Carotenoid : Chlorophyll-${\alpha}$ ratio coincided with higher temperature.

LIGHT-DEPENDENT CHANGES OF CHLOROPHYLL FLUORESCENCE AND XANTHOPHYLL CYCLE PIGMENTS IN MAIZE LEAVES DURING DESICCATION

  • Xu, Chang-Cheng;Lee, Choon-Hwan;Zou, Qi
    • Journal of Photoscience
    • /
    • v.5 no.1
    • /
    • pp.17-22
    • /
    • 1998
  • Changes of chlorophyll fluorescence and xanthophyll cycle pigment contents in maize leaves were investigated dunng desiccation in darkness or in the light. In darkness, a drastic dehydration of detached maize leaves down to 50% relative water content (RWC) affected photochemical efficiency of photosystem II (Fv/Fm) and pht)tochemical quenching (qP) only slightly. In contrast, desiccation in the light with a moderate intensity led to a pronounced reduction in Fv/Fm with a Fo quenching when RWC was greater than 70%. This reduction in Fv/Fm could be recovered in darkness under hutrod condition. In leaves with RWC below 70%, significant reduction in Fv/Fm was accompanied by an increase of Fo, which could not be reversed within 5 h in darkness under humid condition. The nonphotochemical quenching increased during desiccation in the light with a concomitant rise in zeaxanthin at the expense of violaxanthin. Pretreatment with dithiothreitol (DTT), an inhibitor of zeaxanthin synthesis, inhibited the development of nonphotochemical quenching and prevented the xanthophyll interconversion during desiccation in the light. These results suggest that even light with a moderate intensity becomes excessive under dehydration and zeaxanthin-associated photoprotection of photosynthetic apparatus against photodamage is involved, but the protection is not complete against severe desiccation.

  • PDF

Response of Leaf Pigment and Chlorophyll Fluorescence to Light Quality in Soybean (Glycine max Merr. var Seoritae) (콩의 광질에 대한 엽 색소 및 엽록소 형광반응 연구)

  • Park, Sei-Joon;Kim, Do-Yun;Yoo, Sung-Yung;Kim, Hyun-Hee;Ko, Tae-Seok;Shim, Myong-Yong;Park, So-Hyun;Yang, Ji-A;Eom, Ki-Cheol;Hong, Sun-Hee;Kim, Tae-Wan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.3
    • /
    • pp.400-406
    • /
    • 2010
  • Etiolation of plant leaves evoke to be photosynthetically inactive because plant leaves are unable to convert photochlorophyllide to chlorophyllide in the absence of light. In addition, UV-B radiation plays an important role in photomorphogenesis and excessive UV-B radiation decreases photosynthesis and causes to damage to cellular DNA. In the present study, two electrical lights obtained with the ultraviolet lamp and moderate lamp were employed to young plants soybean (Glycine max Merr. var Seoritae). After treatment of different lights, young plants were harvested for the determination of pigment contents and chlorophyll fluorescence. The contents of carotenoids and anthocyanins were significantly enhanced with the excessive UV-B radiation. Excessive UV-B light reduced dramatically photosynthetic efficiency causing an irreversible damage on PSII in comparison to the controls treated under normal illumination. As the treatment of normal illumination after dark treatment, the contents of carotenoids and anthocyanains were not changed in the leaves and photosynthetic ability were retained. Therefore, Seoritae soybean leaves might protect themselves from excessive UV-B radiation with up-regulation of antioxidants.

Preparation of Laver Powder and Its Characteristics (김분말의 제조와 특성)

  • Lee, Hyang-Hee;Lee, Jang-Wook;Rhim, Jong-Whan;Jung, Soon-Teck;Park, Yang-Kyun;Ham, Kyung-Sik;Kim, In-Chul;Kang, Seong-Gook
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.5
    • /
    • pp.1283-1288
    • /
    • 1999
  • Effect of drying methods, such as natural solar drying, hot air drying$(at\;60^{\circ}C\;and\;105^{\circ}C)$, vacuum drying and freeze drying methods, on the quality of laver were investigated to develop optimum processing conditions for preparation of laver powder. Appreciable amount of laver pigments such as chlorophyll, carotenoid and phycobilin were lost during washing and drying process. Their loss was affected significantly by the method of drying. Among the methods tested, high temperature air drying was the worst in retaining laver pigment, while freeze drying was the best. Loss of vitamin C which was in the range of 75-99% was also affected by the method of drying. Isotherms for laver powder shelved sigmoidal shape and monomolecular layer moisture content of both laver powder(Porphyra dentata and Porphyra tenera) determined by the BET equation was 6.30%(dry basis). Laver powders prepared with Porphyra dentata and classified with 50-, 80- and 100- mesh sieves showed monomodal size distribution with the high frequency at 110-120, 100-110 and $80\;{\mu}m$, respectively, which indicated that size or laver powder was homogeneous.

  • PDF

A Bioassay for Chemicals Affecting Plant Pigment Biosynthesis: Greening Assay (식물색소 관여형 화합물의 생물검정법으로서 Greening Assay)

  • Kim, J.S.;Kim, T.J.;Hong, K.S.;Hwang, I.T.;Cho, K.Y.
    • Korean Journal of Weed Science
    • /
    • v.10 no.3
    • /
    • pp.214-220
    • /
    • 1990
  • To establish a greening assay for screening, and physiological and biochemical studies of the compounds affecting biosynthesis of plant pigments, were conducted on environmental factors, and on ways of incubation and illumination which affect plant greening. Greening was good when both cucumber and barley were grown for 5 to 6 days at $25^{\circ}C$ in darkness, when adaxial sides of cucumber cotyledons were contacted with the solution, and when barley leaf fragments were taken 0.5 to 2.0cm from the leaf tip. Potassium phosphate buffer(pH 6.0) at 10mM was most desirable for plant greening. The speed of greening during illumination was increased as the temperature increased from $15^{\circ}C$ to $35^{\circ}C$. The responses were sensitive more in cucumber than in barley, and in chlorophyll biosynthesis than in carotenoid biosythesis. The content of chlorophyll was greatest at the light intensity of 5000 and 1000 lux for cucumber and barley, respectively, but the biosynthesis of carotenoids were greatest at the light intensity higher than for chlorophyll. In use of solvents for dissolving chemicals, acetone, ethyl alcohol and DMSO at 10, 0.1 and 2.5% or less, respectively, did not affect the biosynthesis of plant pigments. $pI_{50}$ values were calculated for chemicals affecting pigment biosynthesis.

  • PDF

Toasting Effects on the Lipid Oxidation, Antioxidants, and Pigments of Dried Laver (Porphyra spp.) (토스팅에 따른 김의 지방질 산화, 산화방지성분과 색소 변화)

  • Son, Soojeong;Choe, Eunok
    • Korean Journal of Food Science and Technology
    • /
    • v.46 no.6
    • /
    • pp.677-681
    • /
    • 2014
  • The effects of toasting, simulated gimgui (dried and toasted laver) manufacturing, on lipid oxidation and antioxidant and pigment contents of dried laver (Porphyra spp.) were evaluated by peroxide value (POV) and conjugated dienoic acid (CDA) value measurement, HPLC, and spectrophotometry. Dried laver was toasted for 40 or 300 s at $120^{\circ}C$, or for 2 or 5 s at $250^{\circ}C$. The POV and CDA contents were significantly higher in the toasted samples (0.60-0.69 mmol/kg and 2.17-4.20%, respectively) except in samples toasted at $120^{\circ}C$ for 40 s, compared to those in the non-toasted samples (0.43 mmol/kg and 1.21%, respectively). Chlorophyll was the most stable pigment during toasting (>90% retention), followed by carotenoids (50-77% retention) and phycocyanins and phycoerythrins (13-73% retention). Porphyran was the most stable antioxidant (>95% retention), and polyphenols, the most unstable antioxidant (24-75% retention). Despite the degradation of pigments and antioxidants during toasting, the dried laver still contained health-benefiting components after toasting.