• 제목/요약/키워드: chlorophyll efficiency

검색결과 241건 처리시간 0.025초

Effects of Six Antibiotics on the Activity of the Photosynthetic Apparatus and Ammonium Uptake of Thallus of Porphyra yezoensis

  • Oh, Min-Hyuk;Kang, Yun-Hee;Lee, Choon-Hwan;Chung, Ik-Kyo
    • ALGAE
    • /
    • 제20권2호
    • /
    • pp.121-125
    • /
    • 2005
  • The modern integrated fish-seaweed mariculture has been tested to reduce the environmental impacts of an intensive fed culture. To obtain the best seaweed bioremediation performance, the effects of therapeutants used for fish disease control on the selected seaweed species should be considered. As a selected seaweed, Porphyra yezoensis was tested with six commercial antibiotics including erythromycin thiocyanate_A, erythromycin thiocyanate_B, oxytetracycline, doxycycline, pefloxacin, and amoxicillin trihydrate under the batch incubation at a photon flux density of 10 $\mu$mol ${\cdot}m^{-2}\;{\cdot}\;s^{-1}$ at 15$^{\circ}C$. Among the tested commercial antibiotics, erythromycin thiocyanate_A, erythromycin thiocyanate_B, oxytetracycline, and doxycycline showed decreases in Fv/Fm, the photochemical efficiency of photosystem II, with a dose-dependant and time-dependant manner. From the quenching analysis of chlorophyll fluorescence, three differential patterns were observed in the antibiotics-treated Porphyra: (1) high nonphotochemical quenching (NPQ) and low photochemical quenching (qP) in the cases of Erythromycin thiocyanate_B and amoxicillin trihydrate, (2) high NPQ and high qP in the case of pefloxacin and (3) low NPQ and low qP in the case of oxytetracycline. These results indicated that antibiotics affected in various ways on the photosynthetic apparatus, reflecting differential lesion sites of antibiotics. In addition, the rates of ammonium uptake also decreased with a decrease of Fv/Fm in P. yezoensis thalli treated with erythromycin thiocyanate_B and oxytetracycline. Therefore, the four antibiotics mentioned could affect the bioremediation capacity of the selected seaweed species in the integrated fish-seaweed mariculture system due to the decrease of photosynthetic activity and the simultaneous decrease of ammonium uptake.

안산 공단지역에 식재된 소나무류 2종의 생장과 생리학적 반응 (Growth and Physiological Responses of Two Pine Species Grown under Polluted Ansan Industrial Region)

  • 진현오;최동수;이충화;정용호
    • The Korean Journal of Ecology
    • /
    • 제28권5호
    • /
    • pp.321-326
    • /
    • 2005
  • 안산 공단지대에 식재되어 있는 잣나무와 리기다소나무의 생장 저하의 실태와 그 원인을 구명하기 위하여 생장 및 생리학적 반응을 중심으로 대조구와 비교 고찰하였다. 피해구에 식재 되어 있는 두 수종의 침엽 내 Mn, F 그리고 Cl의 농도는 대조구에 비하여 유의적으로 높았으며, 2년생 3년생으로 갈수록 급격히 그 농도가 증가하였다. 또한 필수 영양 원소인 P와 클로로필 함량은 피해구가 대조구에 비하여 유의적으로 감소하였으며, 또한 침엽의 연령이 증가함에 따라 급격히 감소하였음을 알 수 있었다. 한편, 피해구에 식재되어 있는 두 수종의 최대 광합성률, 양자수율$(\Phi)$, 카르복실레이션효율(CE)등의 광합성 능은 대조구에 비하여 현저히 감소하였다. 이상과 같이 독성 원소의 축적 및 필수 영양 원소의 부족 등 환경 스트레스에 의한 수목 생리활동의 저하가 수목 생장 저하의 직접적인 원인으로 판단된다.

Effect of oyster shell powder on nitrogen releases from contaminated marine sediment

  • Khirul, Md Akhte;Kim, Beom-Geun;Cho, Daechul;Yoo, Gilsun;Kwon, Sung-Hyun
    • Environmental Engineering Research
    • /
    • 제25권2호
    • /
    • pp.230-237
    • /
    • 2020
  • Nitrogen flux release from organically enriched sediments into overlying water, which may have significantly influence on water quality and increasing continuous eutrophication. The purpose of this study is to evaluate the remediation efficiency of oyster shell powder and its treated product into organically enriched sediment in terms of nitrogen flux, organic matter, chlorophyll-a, pH and dissolved oxygen (DO). The TOSP was mainly composed of CaO2. The application of TOSP into the sediment has increased the pH, DO and significantly decreased the concentrations of NH4+-N and T-N compared to other basins. On the other hand, nitrate was enriched with the addition of treated oyster powder, an oxygen releasing compound on both phases. Furthermore, chlorophyll-a was found to be increasing with time in the control basin meanwhile it dropped drastically with the addition of TOSP, which implied on the repression of algal growth owing to blockage of nitrogen source migrating from the sediment. This study has shown that the TOSP was effective to improve sediment-water quality, diminish eutrophication and control harmful algae blooms in a marine environment. Therefore, it is a good reference as an effective environmental remediation agent.

ATMOSPHERIC CORRECTION TECHNIQUE FOR GEOSTATIONARY OCEAN COLOR IMAGER (GOCI) ON COMS

  • Shanmugam, Palanisamy;Ahn, Yu-Hwan
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume I
    • /
    • pp.467-470
    • /
    • 2006
  • Geostationary Ocean Color Imager (GOCI) onboard its Communication Ocean and Meteorological Satellite (COMS) is scheduled for launch in 2008. GOCI includes the eight visible-to-near-infrared (NIR) bands, 0.5km pixel resolution, and a coverage region of 2500 ${\times}$ 2500km centered at 36N and 130E. GOCI has had the scope of its objectives broadened to understand the role of the oceans and ocean productivity in the climate system, biogeochemical variables, geological and biological response to physical dynamics and to detect and monitor toxic algal blooms of notable extension through observations of ocean color. To achieve these mission objectives, it is necessary to develop an atmospheric correction technique which is capable of delivering geophysical products, particularly for highly turbid coastal regions that are often dominated by strongly absorbing aerosols from the adjacent continental/desert areas. In this paper, we present a more realistic and cost-effective atmospheric correction method which takes into account the contribution of NIR radiances and include specialized models for strongly absorbing aerosols. This method was tested extensively on SeaWiFS ocean color imagery acquired over the Northwest Pacific waters. While the standard SeaWiFS atmospheric correction algorithm showed a pronounced overcorrection in the violet/blue or a complete failure in the presence of strongly absorbing aerosols (Asian dust or Yellow dust) over these regions, the new method was able to retrieve the water-leaving radiance and chlorophyll concentrations that were consistent with the in-situ observations. Such comparison demonstrated the efficiency of the new method in terms of removing the effects of highly absorbing aerosols and improving the accuracy of water-leaving radiance and chlorophyll retrievals with SeaWiFS imagery.

  • PDF

The effect on photosynthesis and osmotic regulation in Beta vulgaris L. var. Flavescens DC. by salt stress

  • Choi, Deok-Gyun;Hwang, Jeong-Sook;Choi, Sung-Chul;Lim, Sung-Hwan;Kim, Jong-Guk;Choo, Yeon-Sik
    • Journal of Ecology and Environment
    • /
    • 제39권1호
    • /
    • pp.81-90
    • /
    • 2016
  • This study was to investigate the effect of salt stress on physiological characteristics such as plant growth, photosynthesis, solutes related to osmoregulation of Beta vulgaris. A significant increase of dry weight was observed in 50 mM and 100 mM NaCl. The contents of Chl a, b and carotenoid were lower in NaCl treatments than the control. On 14 day after NaCl treatment, photosynthetic rate (PN), the transpiration rate (E) and stomatal conductance of CO2 (gs) were reduced by NaCl treatment. On 28 day after NaCl treatment, the significant reduction in gs and E was shown in NaCl 200 mM. However, PN and water use efficiency (WUE) in all NaCl treatments showed higher value than that of control. Total ion contents (TIC) and osmolality were higher than the control. On 14 day after treatment, the contents of proline (Pro) increased significantly in 200 mM and 300 mM NaCl concentration compared with control, whereas on 28 day in all treatments it was lower than that of the control. The contents of glycine betaine (GB) increased with the increase of NaCl concentration. The contents of Na+, Cl-, GB, osmolality and TIC increased with the increase of NaCl concentrations. These results suggested that under severe NaCl stress conditions, NaCl treatment did not induce photochemical inhibition on fluorescence in the leaves of B. vulgaris, but the reduction of chlorophyll contents was related in a decrease in leaf production. Furthermore, increased GB as well as Na+ and Cl- contents resulted in a increase of osmolality, which can help to overcome NaCl stress.

2년 근 인삼재배 시 파인버블(Fine bubble)처리가 생육에 미치는 영향 (Effect of Fine Bubble Treatment on the Growth of Two-year-old Ginseng)

  • 안철현
    • 한국자원식물학회지
    • /
    • 제30권5호
    • /
    • pp.549-555
    • /
    • 2017
  • 재배지 부족과 기후변화로 인하여 인삼재배의 생산량이 적어지고 있어 추가적인 방법이 필요하다. 따라서 기존에는 환경산업 및 식품포장, 가공에 활용되고 있는 파인버블을 우리나라 대표 작물인 인삼재배에 적용하여 변화되는 생리적, 형태적 특성을 분석하였다. 2년 근 인삼에 파인버블수를 적용한 결과 Table 2에서 보듯이 줄기 길이와 잎이 증가되었고 뿌리에서는 주근이 커지면서 무게가 증가되었다. 특히 잎이 커지면서 뿌리의 무게가 증가됨을 보이고 있는데 이는 총엽록소 함량을 확인한 결과 높게 나와 광합성 효율 증대와 연계되었다고 판단된다. 본 연구결과에서는 파인버블수를 사용한 인삼 재배시 인삼의 성장 저해가 나타나지 않았음을 확인하였으며, 생리적 특성 및 세분화된 결과를 통해 인삼의 전체적인 생육이 약 10%에서 15% 생장이 증가되는 것을 확인할 수가 있다. 따라서 인삼 재배시 파인버블수를 적용함으로써 인삼이 생육 증대가 이루어지고 있다는 것을 의미할 수 있다. 추후 파인 버블수를 적용된 3-5년 근의 고년 근 인삼에서도 특징을 유지하는지 추가적인 연구가 필요하다고 사료된다.

Photosynthetic Response and Protective Regulation To Ultraviolet-B Radiation In Green Pepper (Capsicum annuum L.)Leaves

  • Kim, Dae-Whan;Jun, Sung-Soo;Hong, Young-Nam
    • Journal of Photoscience
    • /
    • 제8권1호
    • /
    • pp.1-7
    • /
    • 2001
  • The deteriorative effect of ultraviolet-B(UV-B) radiation on photosynthesis was assessed by the simultaneous measurement of O$_2$ evolution and chlorophyll(Chl) fluorescence in green pepper. UV-B was given at the intensity of 1 W$.$m$\^$-2/, a dosage often encountered in urban area of Seoul in Korea, to detached leaves. Both Pmax and quantum yield of O$_2$ evolution was rapidly decreased, in a parallel phase, with increasing time of UV-B treatment. Chl fluorescence parameters were also significantly affected. Fo was increased while both Fm and Fv were decreased. Photochemical efficiency of PSII(Fv/Fm) was also declined, although to a lesser extent than Pmax. Both qP and NPQ were decreased similarly with increasing time of UV-B treatment. However, PS I remained stable. The addition of lincomycin prior to UV-B treatment accelerated the decline in Fv/Fm to some extent, suggesting that D1 protein turnover may play a role in overcoming the harmful effect of UV-B. The amount of photosynthetic pigments was less affected than photosynthetic response in showing decline in Chl a and carotenoids after 24 h-treatment. Presumptive flavonoid contents, measured by changes in absorbance at 270 nm , 300 nm and 330nm, were all increased by roughly 50% after 8 h-treatment. Among antioxidant enzymes, activities of catalase and peroxidase were steadily increased until 12h of UV-B treatment whereas ascorbate perxidase, dehydroascorvate reductase and glutathione reductase did not show any significant change. The results indicate that deteriorative effect of UV-B on photosynthesis precedes the protection exerted by pigment synthesis and antioxidant enzymes.

  • PDF

The Effects of Salt Stress on Photosynthetic Electron Transport and Thylakoid Membrane Proteins in the Cyanobacterium Spirulina platensis

  • Sudhir, Putty-Reddy;Pogoryelov, Denys;Kovacs, Laszlo;Garab, Gyozo;Murthy, Sistla D.S.
    • BMB Reports
    • /
    • 제38권4호
    • /
    • pp.481-485
    • /
    • 2005
  • The response of Spirulina (Arthrospira) platensis to high salt stress was investigated by incubating the cells in light of moderate intensity in the presence of 0.8 M NaCl. NaCl caused a decrease in photosystem II (PSII) mediated oxygen evolution activity and increase in photosystem I (PSI) activity and the amount of P700. Similarly maximal efficiency of PSII (Fv/Fm) and variable fluorescence (Fv/Fo) were also declined in salt-stressed cells. Western blot analysis reveal that the inhibition in PSII activity is due to a 40% loss of a thylakoid membrane protein, known as D1, which is located in PSII reaction center. NaCl treatment of cells also resulted in the alterations of other thylakoid membrane proteins: most prominently, a dramatic diminishment of the 47-kDa chlorophyll protein (CP) and 94-kDa protein, and accumulation of a 17-kDa protein band were observed in SDS-PAGE. The changes in 47-kDa and 94-kDa proteins lead to the decreased energy transfer from light harvesting antenna to PSII, which was accompanied by alterations in the chlorophyll fluorescence emission spectra of whole cells and isolated thylakoids. Therefore we conclude that salt stress has various effects on photosynthetic electron transport activities due to the marked alterations in the composition of thylakoid membrane proteins.

광화학적 반응 분석을 통한 부화장 폐달걀 분해 액비의 고추 생장촉진효과 평가 (Evaluation through Photochemical Response Analysis on Growth Enhancing Effect of Decomposed Hatchery Waste Egg for Red Pepper)

  • 유성영;강홍규;유재홍;이전규;심명용
    • 환경생물
    • /
    • 제34권3호
    • /
    • pp.161-168
    • /
    • 2016
  • 본 연구에서는 엽록소 형광반응 (OJIP)분석을 통해 고추재배에서 폐달걀 분해 액비의 생육증진효과에 대하여 평가하였다. 고추재배 전기간을 통하여 고추의 생장은 통계학적으로 유의성을 보이지는 않았으나, 폐달걀 분해 액비를 처리한 실험구에서 좋은 생육을 보였다. 엽록소 형광반응 실험 시작한 후 무처리구의 엽록소 형광량이 분해 액비의 형광량보다 커서 분해 액비 처리구의 광이용 효율이 더 좋았음을 알 수 있었다. 이는 결국 광합성량의 증가로 이어질 것으로 판단된다. 광화학 매개변수 중 Fo, ABS/RC, RC/ABS, TRo/RC, $DI_0$/RC, $\text{DF_{TOTAL ABS}}$ 등 6개 parameter가 광화학 반응의 효율을 나타내는 중요한 요인으로 판단되었다.

자외선-B 스트레스에 대한 담배 잎의 광합성 능의 변화 (Effects of Ultraviolet-B Radiation on Photosynthesis in Tobacco (Nicotiana tabacum cv. Petit Havana SR1) Leaves)

  • 이혜연;박연일;홍영남
    • 한국환경농학회지
    • /
    • 제26권3호
    • /
    • pp.239-245
    • /
    • 2007
  • The effect of ultraviolet-B (UV-B) radiation on photosynthesis was studied by the simultaneous measurements of $O_2$ evolution and chlorophyll (Chl) fluorescence in tobacco leaves. When the tobacco leaves were teated with UV-B (1 $W{\cdot}m^{-2}$), the maximal photosynthetic $O_2$, evolution (Pmax; 4.60 ${\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$) at 200 ${\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$) was decreased with increasing time of UV-B treatment showing 80% decline after 4 h treatment. Chl fluorescence parameters were also affected by ultraviolet-B. Fo was increased while both Fm and Fv were decreased, resulted in the decreased of photochemical efficiency of PSII (Fv/Fm). Non-radiative dissipation of absorbed light as heat as estimated as NPQ (Fm/Fm' - 1) was also decreased with increasing time of UV-B treatment while the extent of photochemical quenching (qP) was not changed. Thus, the ratio of (1-qP)/NPQ parameter was also increased with increasing time of UV-B treatment indicating PSII is under the threat of photoinhibition. The result indicate that UV-B primarily decreases the capacity to dissipate excitation energy by trans-thylakoid pH, which in turn inhibits PSII activity.