• Title/Summary/Keyword: chlorine dioxide gas

Search Result 47, Processing Time 0.022 seconds

Quality Changes of Strawberry by Slow-released ClO2 Gas Gel-pack during Storage (서방형 이산화염소 가스 젤팩을 이용한 딸기의 저장 중 품질 변화)

  • Lee, Kyung-Haeng;Bong, So-Jung;Yoon, Ye-Ji;Lee, Bom;Kwak, Il-Hwan;Min, Kyung-Hoon;Kim, Hong-Gil
    • The Korean Journal of Food And Nutrition
    • /
    • v.30 no.3
    • /
    • pp.591-598
    • /
    • 2017
  • To prolong the shelf-life of strawberry, samples were treated with gel packs containing slow-released chlorine dioxide($ClO_2$) gas at 3~7 ppm for 6 days at room temperature. The weight loss and decay ratio as well as changes in pH, color and texture properties of the treated samples were investigated. The weight of the control and $ClO_2$ gas treated samples decreased slightly, but the weight of the control changed faster than those of the $ClO_2$ gas treated samples during the storage period. The decay ratio of control was higher than those of the $ClO_2$ gas treatments since 4 days of storage. The pH and acidity in the control and in the $ClO_2$ gas treated samples were no differences during storage period. The lightness of strawberry decreased during storage, but there was no difference in lightness among the treatments even when storage time was extended. The redness and yellowness of the control showed higher change than those of the $ClO_2$ gas treatments during 6 days. The firmness of the control changed more rapidly than those of the $ClO_2$ gas treatments during 6 days. Especially, the samples treated 3 and 5 ppm $ClO_2$ gas were the least changed. And the scores for appearance, firmness and overall acceptance control and 7 ppm $ClO_2$ gas treatment decreased more rapidly than those of 3 and 5 ppm treatment.

Quality Changes of Chicken Breast Meat by Slow-Released ClO2 Gas Gel-Pack during Storage (서방형 이산화염소 가스 젤팩을 이용한 닭가슴육 저장 중 품질 변화)

  • Lee, Kyung-Haeng;Yoon, Ye-Ji;Kwon, Hye-Won;Lee, Bom;Kim, Hong-Gil
    • The Korean Journal of Food And Nutrition
    • /
    • v.31 no.1
    • /
    • pp.127-134
    • /
    • 2018
  • To prolong the shelf-life of chicken breast meat, samples were treated with gel packs containing slow-released chlorine dioxide ($ClO_2$) gas at 7~15 ppm for eight days at $4^{\circ}C$. The microbial, physicochemical properties and sensory evaluation of the treated samples were investigated. The total number of bacteria in the control increased during storage and showed 6.78 log CFU/g on the 8th day of storage, but $ClO_2$ gas treatments showed 6.24~6.58 log CFU/g at the same time. The initial pH of chicken breast meat was 6.00 and gradually increased during storage. And $ClO_2$ gas treatments did not show any significant difference from the control during storage period, but maintained a generally lower pH than that of the control. The lightness, redness, and yellowness during storage were not significantly different between the control and the 7~10 ppm $ClO_2$ gas treatments. However, as the storage period was increased, the redness of 15 ppm $ClO_2$ gas treatment was reduced. The cooking loss and shear force were not different between the control and $ClO_2$ gas treatments during the storage period. Volatile basic nitrogen (VBN) increased in the control from the 6th day of storage and 23.80 mg% in the 8th day of storage. However, VBN of $ClO_2$ treatments showed lower than that of the control. In the change of sensory evaluation during storage, 10 ppm $ClO_2$ treatment showed the highest preference in odor, appearance and overall acceptance during storage period.

Characteristics of Acidic Gas Emissions from Combustion with Preblending of Coal and Sludge (석탄과 슬러지의 예혼합연소에 따른 산성가스 배출특성)

  • Shim, Sung-Hoon;Jeong, Sang-Hyun;Min, Hyo-Ki;Lee, Sang-Sup
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.2
    • /
    • pp.103-108
    • /
    • 2014
  • Using dried sludge as a secondary fuel of a coal-fired power plant is proposed as an alternative option for sludge disposal. Because elemental contents of sludge are different from those of coal, different levels of acidic gas emissions are expected from the co-combustion of sludge with coal. In this study, sludge samples were obtained from 7 sewage treatment plants in Korea. Each sludge sample was combusted together with coal in a lab-scale combustor, and the concentrations of nitrogen oxides ($NO_x$), sulfur dioxide ($SO_2$), hydrogen chloride (HCl), chlorine ($Cl_2$) in the flue gas were analyzed. Compared to the combustion of coal only, $NO_x$ concentration was slightly higher in the flue gas from the co-combustion of coal and sludge. $SO_2$ emission increased with the combustion of sludge due to the higher content of sulfur in sludge than in coal. For most of the tested samples, the concentrations of HCl and $Cl_2$ were varied depending on the chlorine content in the sludge sample.

Microscopic Study of Decomposition-Inhibition in Stabilized $ClO_2$ Gas in Skeletal Muscle of Rat (흰쥐 골격근에서 안정화 이산화염소(Stabilized $ClO_2$)의 부패억제에 관한 현미경적 연구)

  • Hwang, Kyu-Sung;Jeong, Moon-Jin;Jeong, Soon-Jeong;Ahn, Yong-Soon;Lim, Do-Seon
    • Applied Microscopy
    • /
    • v.41 no.4
    • /
    • pp.277-284
    • /
    • 2011
  • This study was conducted to determine the antiseptic effect of stabilized chlorine dioxide (S-$ClO_2$) on muscle tissue of rats. Skeletal muscle of 8-week old Sprague-Dawley rats was used. Light and transmission electron microscopic findings were observed in the control group, which was not treated with stabilized chlorine dioxide, and in the experimental group, which was treated with a stabilized chlorine dioxide powder in aqueous solution. According to the LM and TEM observations, the day 1 control group showed the initiation of endomysium collapse resulting in an unclear boundary of muscle fibers, and partial collapse of the mitochondrial membranes. All endomysium had collapsed, and bacteria were observed among muscle fibers in the day 2 and later groups. Shapes of muscles were not distinguishable in day 3 or later groups. In contrast, the day 1 and 3 experimental groups revealed detailed structure of typical muscles, but partial collapse of the mitochondrial membranes was observed in the day 3 and later groups. Subsequently, connective tissues collapsed and structures in the shape of concentric circles were observed. In summary, the day 1 control group showed the initial collapse of tissues, and shapes were not distinguishable in the day 3 and later groups because most of the tissues had collapsed. In contrast, the day 3 experimental group showed partial collapse, but the overall shapes of muscles were maintained as time went on, confirming the antiseptic effect of stabilized chlorine dioxide on muscles.

Changes in Lipid Oxidation and Taste Compounds of Chicken Breast Meat by Slow-released ClO2 Gas Gel-pack during Storage (서방출형 이산화염소 가스 젤팩 첨가가 닭가슴육 저장 중 지질산패 및 정미성분의 변화)

  • Lee, Kyung-Haeng;Kwon, Hye-Won;Yoon, Ye-Ji;Kim, Hong-Gil
    • The Korean Journal of Food And Nutrition
    • /
    • v.32 no.4
    • /
    • pp.294-303
    • /
    • 2019
  • To extend the shelf-life of chicken breast meat, samples were treated with gel-packs containing slow-released $ClO_2$ gas at 7-15 ppm for 8 days at $4^{\circ}C$. And the changes in lipid oxidation and taste compounds of the samples were investigated. TBARS value of the chicken breast was slightly increased during storage. TBARS value of gas treatments was similar to the control during storage. There were 14 fatty acids in the chicken breast. And there was no change in the fatty acid composition during storage, and there was no significant difference between the control and gas treatments. The content of free amino acids was gradually increased during storage. The content of free amino acids were not significantly different between the control and gas treatments during storage. The content of GMP in the control and gas treatments were decreased during storage. However, gas treatments showed slightly higher content than that of control. AMP was not significantly different between the control and gas treatments. IMP gradually decreased during storage and the content of inosine and hypoxanthine was increased. IMP, inosine and hypoxanthine contents of gas treatment were similar to control, but the control tended to change more rapidly than those of gas treatments.

Decomposition of Chlorinated Methane by Thermal Plasma (열플라즈마에 의한 클로로메탄의 분해)

  • Kim, Zhen Shu;Park, Dong Wha
    • Applied Chemistry for Engineering
    • /
    • v.18 no.2
    • /
    • pp.136-141
    • /
    • 2007
  • The decomposition of chlorinated methanes including $CCl_4$, $CCl_3H$, and $CCl_2H_2$ was carried out using a thermal plasma process and the characteristics of the process were investigated. The thermal equilibrium composition was analyzed with temperature by Fcatsage program. The decomposition rates at various process parameters including the concentration of reactants, flow rate of carrier gas, and quenching rate, were evaluated, where sufficiently high conversion over 92% was achieved. The generation of main products was strongly influenced by the reaction atmosphere; carbon, chlorine, and hydrogen chloride at neutral condition; carbon dioxide, chlorine, and hydrogen chloride at oxidative condition. The decomposition mechanism was speculated considering the results from Factsage and the identification of generated radicals and ionic species. The main decomposition pathways were found to be dissociative electron attachment and oxidative by radicals formed in a plasma state.

The Adsorption Removal Characteristics of Trace Organic By-Products in Disinfection of Drinking Water by Biological Activated Carbon(BAC) (음용수 소독 미량 유기오염물질 생성에 대한 생물활성탄(Biological Activated Carbon)의 흡착제거 특성)

  • Ok, Chi-Sang;Kim, Jeong-A;Bae, Gi-Cheol
    • Journal of Environmental Science International
    • /
    • v.1 no.1
    • /
    • pp.53-68
    • /
    • 1992
  • In order to research the adsorption removal characteristics of trace organic by-products in disinfection of drinking water by biological activated carbon(BAC), water samples disinfect- ted with $Cl_2$, $O_3$ and $ClO_2$ after treatment by fluidized-bed system with water added with humic acid(10mg/L) were investigated the formation and the removal of trihalomethanes (THMs), and the trace organic by-products by gas chromatography(GC) II gas chromatography/mass selective detector(GC/MSD). Control was used by activated carbon(AC) and water added with humic acid(HA). The results were summarized as follow : The THMs removal effect of BAC by chlorination was in lower 90 % than that of control(HA), the sorts of oxidants formed by $Cl_2$ , $O_3$ and $ClO_2$ were that $O_3$ was very fewer than $Cl_2$ or $ClO_2$, and that $ClO_2$ was fewer than $Cl_2$. The trace organic by-products were esters and phthalates etc. Based on results above, it is concluded that BAC was appeared the more desirable adsorbtion-degradation removal characteristics than that of AC.

  • PDF

Effect of Gaseous Chlorine Dioxide on Sterilization in Industrial Food-holding Cabinets (이산화염소가스를 이용한 식품산업용 소독장에서의 살균효과)

  • Kim, Hyeon Jeong;Shin, Jiyoung;Kim, Ji-eun;Yang, Ji-young
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.2
    • /
    • pp.170-177
    • /
    • 2019
  • The aim of this study was to investigate the effect of different concentrations of chlorine dioxide ($ClO_2$) on sterilization and deodorization of food-holding cabinets under different exposure times. For the measuring sterilization and deodorization, a 6.5 L chamber and a 625 L cabinet with circulation systems were used. Two bacteria (Staphylococcus aureus KCTC1916 and Escherichia coli KCTC 1682) that were artificially inoculated in the plate respectively were put into the 6.5 L chamber and the 625 L cabinet. The $ClO_2$ gas was produced by ampules. In the 6.5 L chamber, neither of the two bacteria was detected after 24 hours treatment by $ClO_2$ gas. Moreover, the deodorization rate against ammonia and phenol was 94% and 70%, respectively, but deodorization against formaldehyde was not effective. When the concentration reached maximum (6 ampule, 4.6 ppm) levels in the cabinet, it lasted for approximately 2 h and then decreased slowly. When a circulator was used, the gas concentration was very low (6 ampule, 0.8 ppm) and the antibacterial activity against S. aureus and E. coli was low. The level of reduction against S. aureus and E. coli was 2.98 log CFU/plate and 6.06 log CFU/plate, respectively, in the cabinet after 24 h without a circulator. The reduction against S. aureus KCTC1916 and E. coli KCTC1682 was 2.69 log CFU/plate and 4.41 log CFU/plate for 24 h, respectively.

Effects of Chlorine Water and Plasma Gas Treatments on the Quality and Microbial Control of Latuca indica L. Baby Leaf Vegetable during MA Storage (염소수와 플라즈마 가스 처리가 왕고들빼기 어린잎채소의 MA저장 중 품질과 미생물 제어에 미치는 영향)

  • Kim, Ju Young;Han, Su Jeong;Whang, Lixia;Lee, Joo Hwan;Choi, In-Lee;Kang, Ho-Min
    • Journal of Bio-Environment Control
    • /
    • v.28 no.3
    • /
    • pp.197-203
    • /
    • 2019
  • This study was carried out to investigate the effect of chlorine water and plasma gas treatment on the quality and microbial control of Latuca indica L. baby Leaf during storage. Latuca indica L. baby leaves were harvested from a plant height of 10cm. They were sterilized with $100{\mu}L{\cdot}L^{-1}$ chlorine water and plasma-gas (1, 3, and 6hours), and packaged with $1,300cc{\cdot}m^{-2}{\cdot}day^{-1}{\cdot}atm^{-1}$ films and then stored at $8{\pm}1^{\circ}C$ and RH $85{\pm}5%$ for 25days. During storage, the fresh weight loss of all treatments were less than 1.0%, and the carbon dioxide and oxygen concentrations in packages were 6-8% and 16-17%, respectively for all treatments in the final storage day. The concentration of ethylene in the packages fluctuated between $1-3{\mu}L{\cdot}L^{-1}$ during the storage and the highest concentration of ethylene was observed at 6 hours plasma treatment in the final storage day. The off-odor of all treatments were almost odorless, the treatments of chlorine water and 1 hour plasma maintained the marketable visual quality until the end of storage. Chlorophyll content and Hue angle value measured at the final storage day were similar to those measured before storage in chlorine water and 1 hour of plasma treatments. E. coli was not detected immediately after sterilization in all sterilization treatments. After 6 hours of plasma treatment, the total bacteria fungus counts were lower than the domestic microbial standard for agricultural product in all sterilization treatments. The total aerobic counts in the end storage day increased compared to before storage, whereas E. coli was not detected in all sterilization treatments. The sterilization effect against bacteria and fungi was the best in chlorine water treatment. Plasma treatment showed sterilization effects, but within a prolonged period of time. In addition, the sterilization effect decreased gradually. These results suggest that chlorine water and plasma treatment were effective in maintaining Latuca indica L. baby Leaf commerciality and controlling microorganisms during postharvest storage.

Effect of Chlorine Dioxide (ClO2) on the Malodor Suppression of Chicken Feces (이산화염소(ClO2) 처리가 계분의 악취 억제에 미치는 영향)

  • Ji Woo, Park;Gyeongjin, Kim;Tabita Dameria, Marbun;Duhak, Yoon;Changsu, Kong;Sang Moo, Lee;Eun Joong, Kim
    • Korean Journal of Poultry Science
    • /
    • v.49 no.4
    • /
    • pp.287-298
    • /
    • 2022
  • This study evaluated the efficacy of chlorine dioxide (ClO2) as an oxidant to reduce malodor emission from chicken feces. Two experiments were performed with the following four treatments in parallel: 1) fresh chicken feces with only distilled water added as a control, 2) a commercial germicide as a positive control, and 3) 2,000 or 4) 3,000 ppm of ClO2 supplementation. Aluminum gas bags containing chicken feces sealed with a silicone plug were used in both experiments, and each treatment was tested in triplicate. In Experiment 1, 10 mL of each additive was added on the first day of incubation, and malodor emissions were then assessed after 10 days of incubation. In Experiment 2, 1 mL of each additive was added daily during a 14-day incubation period. At the end of the incubation, gas production, malodor-causing substances (H2S and NH3 gases), dry matter, pH, volatile fatty acids (VFAs), and microbial enumeration were analyzed. Supplementing ClO2 at 2,000 and 3,000 ppm significantly reduced the pH and the ammonia-N, total VFA, H2S, and ammonia gas concentrations in chicken feces compared with the control feces (P<0.05). Additionally, microbial analysis indicated that the number of coliform bacteria was decrease after ClO2 treatment (P<0.05). In conclusion, ClO2 at 2,000 and 3,000 ppm was effective at reducing malodor emission from chicken feces. However, further studies are warranted to examine the effects of ClO2 at various concentrations and the effects on malodor emission from a poultry farm.