• Title/Summary/Keyword: chlorination by-products

Search Result 72, Processing Time 0.015 seconds

Effects of EBCT and Water Temperature on HAA Removal using BAC Process (BAC 공정에서 EBCT와 수온에 따른 HAA 제거 특성)

  • Son, Hee-Jong;Yoo, Soo-Jeon;Yoo, Pyung-Jong;Jung, Chul-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.12
    • /
    • pp.1255-1261
    • /
    • 2008
  • In this study, The effects of three different biological activated carbon (BAC) materials (each coal, coconut and wood based activated carbons), empty bed contact time (EBCT) and water temperature on the removal of haloacetic acid (HAA) 5 species in BAC filters were investigated. Experiments were conducted at three water temperatures (5, 10 and 20$^{\circ}C$) and four EBCTs (5, 10, 15 and 20 min). The results indicated that coal based BAC retained more attached bacterial biomass on the surface of the activated carbon than the other BAC, increasing EBCT or increasing water temperature increased the HAA 5 species removal in BAC columns. To achieve an HAA removal efficiency 50% or higher in a BAC filter, the authors suggest 10 min EBCT or longer for 5$^{\circ}C$ waters and 5 min EBCT for waters at 10$^{\circ}C$ or higher. The kinetic analysis suggested a first-order reaction model for HAA 5 species removal at various water temperatures (5, 10 and 20$^{\circ}C$). The pseudo-first-order reaction rate constants and half-lives were also calculated for HAA removal at 5, 10 and 20$^{\circ}C$. The pseudo-first-order reaction rate constants and half-lives were also calculated for HAA 5 species removal at 5$\sim$ 20$^{\circ}C$. The half-lives of HAA 5 species ranging from 0.75 to 18.58 min could be used to assist water utilities in designing and operating BAC filters for HAA removal.

Removal Characteristics of Chlorination Disinfection By-Products by Activated Carbons (활성탄 공정에서의 염소 소독부산물 제거특성)

  • Son, Hee-Jong;Roh, Jae-Soon;Kim, Sang-Goo;Bae, Seog-Moon;Kang, Lim-Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.7
    • /
    • pp.762-770
    • /
    • 2005
  • Adsorption and biodegradation performance of chlorinated by-products such as trihalomethanes(THMs) and haloacetic acids(HAA5) on granular activated carbon were evaluated in this study. The coconut-based activated carbon was found more effective than others in adsorption of THMs due to larger pore volume of less than $20{\AA}$. The wood-based activated carbon was less effective than coconut- and coal-based activated carbon in adsorption nevertheless having larger pore volume and specific surface area than others. The maximum adsorption capacity(X/M) of coconut-based carbon for THMS was 1.1-1.5 times larger than coal based carbon and 14.1-31.4 times larger than wood based activated carbons. Activated carbon usage rate(CUR) of coconut-, coal- and wood-based activated carbons for chloroform were 9.4, 11.2 and 38 g/day respectively. In the evaluation of adsorption isotherm of THM species for coconut-, coal- and wood-based activated carbons, k value of chloroform was the lowest in the THM species, It menas that chloroform is difficult to remove by activated carbon adsorption. and BDCM, CDBM, bromoform are in the succeeding order of adsorption. In the evaluation of biodegradation rate, mean biodegradation rate was chloroform 7%, BDCM 5%, CDBM 4% and bromoform 3%, respectively THMs are difficult materials to be biodegraded. In the evaluation of characteristics of adsorption and biodegradation for HAA5 species, HAA5 species appear to be removed effectively by activated carbon. Most of the HAA5 are adsorbed at the beginning of operation periods and HAA5 except TCAA were almost biodegraded from bed volume of 2,000 and more than 90 percent of biodegradation of TCAA was started from bed volume around 4,000 and after that biodegradation rate was increased with increasing bed volume.