• Title/Summary/Keyword: chloride reduction

Search Result 476, Processing Time 0.024 seconds

The Function of Hydrogen Chloride on Methane-Air Premixed Flame (메탄-공기 예혼합 화염에서 염화수소의 역할)

  • Shin, Sung-Su;Lee, Ki-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.9 s.240
    • /
    • pp.979-987
    • /
    • 2005
  • Numerical simulations were performed at atmospheric pressure in order to understand the effect of additives on flame speed, flame temperature, radical concentrations, $NO_x$ formation, and heat flux in freely propagating $CH_4-Air$ flames. The additives were both carbon dioxide and hydrogen chloride which had a combination of physical and chemical behavior on hydrocarbon flame. In the flame established with the same mole of methane and additive, hydrogen chloride significantly contributed toward the reduction of flame speed, flame temperature, $NO_x$ formation and heat flux by the chemical effect, whereas carbon dioxide mainly did so by the physical effect. The impact of hydrogen chloride on the decrease of the radical concentration was about $1.4\~3.0$ times as large as that of carbon dioxide. Hydrogen chloride had higher effect on the reduction of $EI_{NO}$ than carbon dioxide because of the chemical effect of hydrogen chloride. The reaction, $OH+HCl{\rightarrow}Cl+H_2O$, played an important role in the heat flux from flames added by hydrogen chloride instead of the reaction, $OH+H_2{\rightarrow}H+H_2O$ which was an important reaction in hydrocarbon flames.

Structural behaviour of concrete beam under electrochemical chloride extraction against a chloride-bearing environment

  • Ki Yong Ann;Jiseok Kim;Woongik Hwang
    • Computers and Concrete
    • /
    • v.34 no.1
    • /
    • pp.49-61
    • /
    • 2024
  • The present study concerns a removal of chloride ions and structural behaviour of concrete beam at electrochemical chloride extraction (ECE). The electrochemical properties included 1000 mA/m2 current density for 2, 4 and 8 weeks. It was found that an increase in the duration of ECE resulted in an increase in the extraction rate of chlorides, in the range of 35-85%, irrespective of chloride contamination. In structural behaviour, the strength and maximum bending moment of specimen was always lowered by ECE. Moreover, the flexural rigidity and bending stiffness were reduced by the loss of effective cross-section area in the linear elastic range. Simultaneously, the inertia moment was substantially subjected to 70% loss of the cross-section by the tensile strain at the condition of the failure. However, a lower rate of the inertia moment reduction was achieved by ECE, implying the higher resistance to the cracking, but the higher risk of deformation.

The Effect of Hydrogen Chloride on the $NO_x$ Production in $H_2/HCl/Air$ Premixed Flame ($H_2/HCl/Air$ 예혼합 화염의 질소산화물 생성에서 염화수소의 영향)

  • Kwon, Young-Suk;Lee, Ki-Yong
    • Journal of the Korean Society of Combustion
    • /
    • v.9 no.4
    • /
    • pp.28-34
    • /
    • 2004
  • Numerical simulations of freely propagating flames burning $H_2/HCl/Air$ Air mixtures were performed at atmospheric pressure in order to understand the effect of hydrogen chloride on flame structures. The chemical and physical effects of hydrogen chloride on flame structures were observed. A chemical kinetic mechanism was developed, which involved 26 gas-phase species and 198 forward elementary reactions. Under several equivalence ratios the flame speeds were calculated and compared with those obtained from the experiments, the results of which were in good agreement. As hydrogen chloride as additive was added into $H_2/Air$ flame, the flame speed, radical concentration and NO production rate were decreased. The chemical effect of hydrogen chloride caused the reduction of radical concentration, and then the decrease of the net rate of NO production. It was found that the influence in the reduction of $EI_{NO}$ with the addition of hydrogen chloride was attributed more due to the chemical effect than the physical effect.

  • PDF

Prediction of chloride penetration into hardening concrete (경화중 콘크리트의 염해 침투성능에 관한 연구)

  • Fan, Wei-Jie;Wang, Xiao-Yong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.50-51
    • /
    • 2015
  • In marine and coastal environments, penetration of chloride ions is one of the main mechanisms causing concrete reinforcement corrosion. Currently, most of experimental investigations about submerged penetration of chloride ions are started after the four weeks standard curing of concrete. The further hydration of cement and reduction of chloride diffusivity during submerged penetration period are ignored. To overcome this weak point, this paper presents a numerical procedure to analyze simultaneously cement hydration reaction and chloride ion penetration process. First, using a cement hydration model, degree of hydration and phase volume fractions of hardening concrete are determined. Second, the dependences of chloride diffusivity and chloride binding capacity on age of concrete are clarified. Third, chloride profiles in hardening concrete are calculated. The proposed numerical procedure is verified by using chloride penetration test results of concrete with different mixing proportions.

  • PDF

The waste reduction technology of chloride contaminated red-mud from by-product of Bayer process

  • Shin, Hee-Young;Hyun, Jong-Yeong;Masuda, Kaoru;Ohya, Hitoshi;Endoh, Shigehisa
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.598-602
    • /
    • 2003
  • The general red-mud minerals consist of hematite, sodalite, anatase, quartz, gibbsite and miner impurities. This gives serious environmental damage for the ocean disposal. It mixed with chloride compound and the content of chlorine is about 2,000-3,000ppm. This paper can be suggested the chloride reduction technology that is applied basically mineral processing by physical separation. Then it can be possible to produce the totally 24wt. $\%$ useful red-mud which chloride content is less then 400ppm.

  • PDF

DMSO-Oxalyl Chloride for the Oxidation of Carbohydrates (DMSO-Oxalyl Chloride에 의한 당의 산화)

  • 천문우
    • YAKHAK HOEJI
    • /
    • v.27 no.2
    • /
    • pp.181-184
    • /
    • 1983
  • DMSO-oxalyl chloride at low temperature in methylene chloride reacted with isolated secondary hydroxyl groups in some monosaccharides to give alkoxysulfonium salts, convertible to carbonyls in high yields upon addition of triethylamine. And 1, 2:5, 6-di-O-isopropylidene-.alpha.- D-allofuranose which is the key intermediate in the synthesis of 3-O-acetyl-5-O-benzoyl- 2-deoxy-2- fluoro-D-arabinofuranosyl bromide, was also obtained by oxidizing 1, 2:5, 6-di-O-isopropylidene-.alpha.- D-glucofuranose with the oxidizing reagent, followed by reduction with sodium borohydride.

  • PDF

Chloride diffusion study in different types of concrete using finite element method (FEM)

  • Paul, Sajal K.;Chaudhuri, Subrata;Barai, Sudhirkumar V.
    • Advances in concrete construction
    • /
    • v.2 no.1
    • /
    • pp.39-56
    • /
    • 2014
  • Corrosion in RCC structures is one of the most important factors that affects the structure's durability and subsequently causes reduction of serviceability. The most severe cause of this corrosion is chloride attack. Hence, to prevent this to happen proper understanding of the chloride penetration into concrete structures is necessary. In this study, first the mechanism of this chloride attack is understood and various parameters affecting the process are identified. Then an FEM modelling is carried out for the chloride diffusion process. The effects of fly ash and slag on the diffusion coefficient and chloride penetration depth in various mixes of concretes are also analyzed through integrating Virtual RCPT Lab and FEM.

Ammonium Chloride Solution Leaching of Crude Zinc Oxide Recovered from Reduction of EAF′s Dust

  • Youn, Ki-Byoung
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.365-369
    • /
    • 2001
  • EAF's dust has been treated mainly by pyrometallurgical reduction process in rotary kiln furnace to recover valuable metal elements such as Zn and to avoid the disposal of hazardous materials to waste. Recently, hydrometallurgical eletrowinning of zinc from a zinc-amino chloride solution obtained by the leaching of EAF's dust was developed to recover high grade zinc metal from EAF’s dust. But there are some disadvantages in each process such as difficulty of operation condition control and sticking problem in kiln process and low extractability and recovery of zinc owing to insoluble zinc-ferrite in electrowinning process. We propose a new combined process of pyrometallurgical one and hydrometallurgical one to treat EAF's dust efficiently and economically. In this study, ammonium chloride solution leaching of crude zinc oxide recovered from reduction of EAF's dust was carried out to find out the efficiency of zinc extraction from it and the possibility for performance of eletrowinning in the proposed process. Effects of various leaching variables ruck as leaching temperature, concentration of leaching solution and leaching time were investigated. And the leaching results of the crude zinc oxide were compared with those of EAF's dust. The extraction percents of zinc in ammonium chloride solution leaching of the crude zinc oxide recovered from reduction of EAF's dust were above 80% after 60 minutes of leaching under the leaching condition of 4M NH$_4$CI concentration and above leaching temperature of 7$0^{\circ}C$. And the concentrations of zinc in the leached solution were obtained above 50g/$\ell$. The activation energy calculated for zinc extraction in NH$_4$CI leaching was 58.1 KJ/㏖ for EAF's dust and 15.8 KJ/㏖ for the crude zinc oxide recovered from reduction of EAF's dust.

  • PDF

Studies on electrocatalytic effects of LiAlCl4/SOCl2 cell by tetradentate Schiff base metal(II) complexes (네자리 Schiff base 금속(II) 착물들에 의한 LiAlCl4/SOCl2 전지의 전기촉매 효과에 대한 연구)

  • Sim, Woo-Jong;Jeong, Byeong-Goo;Na, Kee-su;Chjo, Ki-Hyung;Choi, Yong-Kook
    • Applied Chemistry for Engineering
    • /
    • v.7 no.3
    • /
    • pp.416-423
    • /
    • 1996
  • Electrochemical reduction of thionyl chloride in 1.5 M $LiAlCl_4/SOCl_2$ electrolyte solution containing tetradentate Schiff base Co(II), Ni(II), Cu(II), and Mn(II) complexes has been investigated at the glassy carbon electrode. The catalyst molecules of transition metal(II) complexes were adsorbed on the electrode surface and reduced thionyl chloride resulting in a generation of oxidized catalyst molecules. There was an optimum concentration for each catalyst compound. The current density of $SOCl_2$ reduction was enhanced up to 150% at the catalyst contained electrolyte solution. The reduction currents of thionyl chloride were increased and the reduction potentials were shifted to the negative potential as scan rates became faster. The reduction of thionyl chloride was proceeded to diffusion controlled reaction.

  • PDF

Strength and Resistance to Chloride Penetration in Concrete Containing GGBFS with Ages (GGBFS를 혼입한 콘크리트의 재령에 따른 강도 및 염소이온 침투 저항성)

  • Park, Jae-Sung;Yoon, Yong-Sik;Kwon, Seung-Jun
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.3
    • /
    • pp.307-314
    • /
    • 2017
  • Concrete is a durable and cost-benefit construction material, however performance degradation occurs due to steel corrosion exposed to chloride attack. Penetration of chloride ion usually decreases due to hydrates formation and reduction of pores, and the reduced chloride behavior is considered through decreasing diffusion coefficient with time. In the work, HPC (High Performance Concrete) samples are prepared with 3 levels of W/B (water to binder) ratios of 0.37, 0.42, and 0.27 and 3 levels of replacement ratios of 0%, 30% and 50%. Several tests containing chloride diffusion coefficient, passed charge, and compressive strength are performed considering age effect of 28 days and 180 days. Chloride diffusion is more reduced in OPC concrete with lower W/B ratio and GGBFS concrete with 50% replacement ratio shows significant reduction of chloride diffusion in higher W/B ratio. At the age of 28 days, GGBFS concrete with 50% replacement ratio shows more rapid reduction of chloride diffusion than strength development, which reveals that abundant GGBFS replacement has effective resistance to chloride penetration even in the early-aged condition.