• Title/Summary/Keyword: chloride loss

Search Result 231, Processing Time 0.032 seconds

A Study on the Measurement of Steel Corrosion in Mortar by TEM Method (TEM법에 의한 모르타르 중의 철근 부식 측정에 관한 연구)

  • Lee Sang-Ho;Han Jeong-Seb
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.2 s.69
    • /
    • pp.59-65
    • /
    • 2006
  • Steel, as a reinforcing mechanism in concrete, provides the tensile strength that is lacking in concrete, alone, and the high alkaline environment (pH 12.5) in concrete offers satisfactory protection against most corrosion of the steel. However, the corrosion of reinforcing steel in concrete can occur by chloride attack or carbonation, and it can cause a loss of integrity a section and concrete failure through cracking and spalling. In this study, a transient electro magnetic method (TEM) of a nondestructive technique is adapted to study the measuring method of steel corrosion in mortar. The sensor was made of an enameled wire, with a diameter of 0.25mm and anacril. He sensor configuration used was a coincident loop type. The secondary electro motive force (2nd EMF) was measured with SIROTEMIII, which equipped the accelerator. The accelerator allowsthe transmitter to turn off approximately $10\sim15$ times faster than normal. The high-resolution time series, used for very shallow or a high resistivity investigation was selected. After steels were corroded by the salt spray, during 4, 8, 15 and 25 days, they were embedded in mortar. The content results acquired in this study are as follows. The variation of the secondary electro motive force (2nd EMF) was shown by the change of steel surface with different corrosion time steel. It was confirmed that measurement of steel corrosion in mortar by a transient electro-magnetic method (TEM) can be possible.

Bonding Properties of Steel-reinforced Polymer Cement Mortar Evaluated by Pull-off Test and FEM Modeling (폴리머 시멘트 모르타르의 철근부착력 평가를 위한 인발실험과 모델링)

  • Park, Dong-Cheon;Yoneda, Nobutosi;Cho, Bong-Suk
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.3
    • /
    • pp.216-222
    • /
    • 2014
  • Chloride attack to reinforced concrete structures located in seaside can cause a serious problem of durability and maintenance during the service life. Corrosion of reinforced steel bars in concrete decreases the bond strength and finally causes the detachment of concrete cover. Polymer cement mortar is usually adopted to repair the deteriorated RC structures because of its strong bonding property. The recovered load-carrying capacity after the repair was simulated by non-linear FEM analysis. The properties of concrete, repairing materials, bonding materials and reinforced bar were used as input data. Four types of redispersible polymer powders were used as components of polymer cement mortar. Pull-off tests were carried out to examine the bond properties such as rigidity and strength. Effects of a corrosion inhibitor and the loss of reinforced bars due to the corrosion were also considered in this study. FEM modeling and analysis were conducted to propose the universal model. Physical bonding in the relationship between repair materials and steel reinforced bar is more dominant than chemical bonding.

A Durability Assessment on Complex Deterioration of Concrete with Ground Granulated Blast-Furnace Slag Replacement (복합열화 환경하에서의 고로슬래그미분말 사용 콘크리트의 내구성능 평가)

  • Lee, Seung-Hoon;Kim, Hyung-Doo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.2
    • /
    • pp.171-175
    • /
    • 2010
  • This paper presents the experimental results of frost durability characteristics including freezing-thawing and de-icing salt scaling of the concrete for gutter of the road and marine structure. Mixtures were proportioned with the three level of water-binder ratio(W/B) and three binder compositions corresponding to Type I cement with 0%, 30% and 50% GGBS(Ground granulated blast furnace slag) replacement. Also, two different solutions of calcium chloride were used to evaluate their effect on the frost durability resistance. Specially, in case of complex of freezing and thawing with salt and carbonation, the deterioration of concrete surface is evaluated. Test results showed that the BFS30 and BFS50 mixture exhibited higher durability and lower mass loss values than those made with OPC mix and the use of GGBS can be used effectively in terms of economy and frost durability of the concrete to be in complex deterioration. Therefore, the resistance to complex deterioration with freezing-thawing was strongly influenced by the strength and the type of cement.

Preparation and Keeping Quality of Proteolytic Enzymes from Seafood rocessing Wastes (어류가공 부산물로부터 단백질분해 효소제의 조제 및 보관안정성)

  • KIM Jin Soo;HEU Min Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.37 no.4
    • /
    • pp.259-268
    • /
    • 2004
  • Keeping qualities of crude proteases (CP) and fractionated proteases (FP) sedimenting with $30\~80{\%}$ ammonium sulfate from four kinds of fish viscera as a seafood processing waste were examined. Azocaseinolytic activlties (pH 6 and 8) of CP from anchovy (Engraulis japonica), mackerel (Scomber japonicus), bastard flatfish (Pararlichthys olivaceus) and red sea bream (Chysorphys major) were stable without activity loss at $4^{\circ}C$ for 7 months. Activities of NaCP (CP containing $30{\%}$ sodium chloride) on azocasein were approximately $30{\%}$ lower than those of CP. FP activities Increased 3.4-16.1 folds compared to those of CP and NaCP Powdered crude protease (PCP) and fractionated and powdered protease (FPP) containing various sugars (lactose, sucrose, glucose and dextrin) were prepared by freeze drying. Activities of PCP and FPP containing sucrose were higher and more stable than those of PCP and FPP containing other sugars at $30^{\circ}C$ for whole keeping periods. PCP and FPP from mackerel viscera showed the highest proteolytic activity among four kind of fish vlsceras. The Optimum conditions and stabilities of FPP from mackerel viscera were pH 9 and $50^{\circ}C$, and pH 5-10 and $20-45^{\circ}C$, respectively. The results of this study suggest that FPP from seafood processing waste may be used as processing aids.

Development of CCD(Corrosion Control Document) in Refinery Process (정유공정의 CCD(Corrosion Control Document) 개발)

  • Kim, Jung-Hwan;Kim, Ji-Yong;Lee, Young-Hee;Park, Sang-Rok;Suh, Sun-Kyu;Lee, Yoon-Hwa;Moon, Il
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.1
    • /
    • pp.31-36
    • /
    • 2009
  • This paper focuses on techniques of improving refinery reliability, availability, and profitability. Our team developed a corrosion control document(CCD) for processing of the crude distillation unit(CDU). Recent study shows the loss due to corrosion in US is around $276 billion. It's a big concern for both managers and engineers of refinery industry. The CCD consists of numerous parts namely damage mechanism(DM), design data, critical reliability variable(CRV), guidelines, etc. The first step in the development of CCD is to build material selection diagram(MSD). Damage mechanisms affecting equipments and process need to be chosen carefully based on API 571. The selected nine DM from API 571 are (1) creep/stress rupture, (2) fuel ash corrosion, (3) oxidation, (4) high temperature sulfidation, (5) naphthenic acid corrosion, (6) hydrochloric acid(HCL) corrosion, (7) ammonium chloride(salt) corrosion, (8) wet $H_2S$ corrosion, and (9) ammonia stress corrosion cracking. Each DM related to corrosion of CDU process was selected by design data, P&ID, PFD, corrosion loop, flow of process, equipment's history, and experience. Operating variables affecting severity of DM are selected in initial stage of CRV. We propose the guidelines for reliability of equipments based on CRV. The CCD has been developed on the basis of the corrosion control in refinery industry. It also improves the safety of refinery process and reduces the cost of corrosion greatly.

AN EXPERIMENTAL INVESTIGATION ON MINIMUM COMPRESSIVE STRENGTH OF EARLY AGE CONCRETE TO PREVENT FROST DAMAGE FOR NUCLEAR POWER PLANT STRUCTURES IN COLD CLIMATES

  • Koh, Kyung-Taek;Park, Chun-Jin;Ryu, Gum-Sung;Park, Jung-Jun;Kim, Do-Gyeum;Lee, Jang-Hwa
    • Nuclear Engineering and Technology
    • /
    • v.45 no.3
    • /
    • pp.393-400
    • /
    • 2013
  • Concrete undergoing early frost damage in cold weather will experience significant loss of not only strength, but also of permeability and durability. Accordingly, concrete codes like ACI-306R prescribe a minimum compressive strength and duration of curing to prevent frost damage at an early age and secure the quality of concrete. Such minimum compressive strength and duration of curing are mostly defined based on the strength development of concrete. However, concrete subjected to frost damage at early age may not show a consistent relationship between its strength and durability. Especially, since durability of concrete is of utmost importance in nuclear power plant structures, this relationship should be imperatively clarified. Therefore, this study verifies the feasibility of the minimum compressive strength specified in the codes like ACI-306R by evaluating the strength development and the durability preventing the frost damage of early age concrete for nuclear power plant. The results indicate that the value of 5 MPa specified by the concrete standards like ACI-306R as the minimum compressive strength to prevent the early frost damage is reasonable in terms of the strength development, but seems to be inappropriate in the viewpoint of the resistance to chloride ion penetration and freeze-thaw. Consequently, it is recommended to propose a minimum compressive strength preventing early frost damage in terms of not only the strength development, but also in terms of the durability to secure the quality of concrete for nuclear power plants in cold climates.

A Study on the Development of Corrosion Inhibitor Treating Surface for Reinforcement Concrete Structures (철근 콘크리트 구조물용 표면 처리형 철근 부식억제제의 개발에 관한 연구)

  • Kim, Do-Gyeum;Koh, Kyoung-Taek;Ryu, Gum-Sung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.1
    • /
    • pp.239-247
    • /
    • 2004
  • When the concrete is subjected to chloride attack or carbonation, the passive steel normally initiate corrosion. By product of corrosion make volume of concrete expand 3 to 8 times and induce the stress which lead cracking and spalling of concrete. It result in the loss of the integrity of the concrete structures. Several corrosion inhibitors imported from America, Japan and Europe are currently being used to repair the concrete structures in Korea. However, questions has been raised for protective effect of the corrosion inhibitors which applied in steel reinforced concrete structures. Therefore, we investigated the influence of type and amount of corrosion inhibitors through the tests immersing in salty water. In addition, we developed the corrosion inhibitive agent treating to surface of concrete structures for improving resistance to penetration and corrosion of the steel reinforcement.

Lithium ameliorates rat spinal cord injury by suppressing glycogen synthase kinase-3β and activating heme oxygenase-1

  • Kim, Yonghoon;Kim, Jeongtae;Ahn, Meejung;Shin, Taekyun
    • Anatomy and Cell Biology
    • /
    • v.50 no.3
    • /
    • pp.207-213
    • /
    • 2017
  • Glycogen synthase kinase $(GSK)-3{\beta}$ and related enzymes are associated with various forms of neuroinflammation, including spinal cord injury (SCI). Our aim was to evaluate whether lithium, a non-selective inhibitor of $GSK-3{\beta}$, ameliorated SCI progression, and also to analyze whether lithium affected the expression levels of two representative $GSK-3{\beta}$-associated molecules, nuclear factor erythroid 2-related factor-2 (Nrf-2) and heme oxygenase-1 (HO-1) (a target gene of Nrf-2). Intraperitoneal lithium chloride (80 mg/kg/day for 3 days) significantly improved locomotor function at 8 days post-injury (DPI); this was maintained until 14 DPI (P<0.05). Western blotting showed significantly increased phosphorylation of $GSK-3{\beta}$ (Ser9), Nrf-2, and the Nrf-2 target HO-1 in the spinal cords of lithium-treated animals. Fewer neuropathological changes (e.g., hemorrhage, inflammatory cell infiltration, and tissue loss) were observed in the spinal cords of the lithium-treated group compared with the vehicle-treated group. Microglial activation (evaluated by measuring the immunoreactivity of ionized calcium-binding protein-1) was also significantly reduced in the lithium-treated group. These findings suggest that $GSK-3{\beta}$ becomes activated after SCI, and that a non-specific enzyme inhibitor, lithium, ameliorates rat SCI by increasing phosphorylation of $GSK-3{\beta}$ and the associated molecules Nrf-2 and HO-1.

Neuroprotective Effects of Hyangsayangwi-tang in MPTP-induced Mouse Model of Parkinson's Disease (MPTP(1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)로 유도된 Parkinson's Disease 동물 모델을 이용한 향사양위탕의 신경 세포 보호 효과)

  • Go, Ga-Yeon;Kim, Yun-Hee;Ahn, Taek-Won
    • Journal of Sasang Constitutional Medicine
    • /
    • v.26 no.2
    • /
    • pp.165-179
    • /
    • 2014
  • Objectives To evaluate the neuroprotective effects of Hyangsayangwi-tang (HY), a Korean traditional medicinal prescription in a Parkinson's disease mouse model. Methods Four groups(each of 10 mouse per group) were used in this study. The neuroprotective effect of HY was examined in a Parkinson's disease mouse model. C57BL/6 mouse treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP, 30mg/kg/day), intraperitoneal (i.p.) for 5 days. Slow behavioral responses and memory disorder is the major clinical symptoms of PD. In order to investigate the effect of HY on recovery of behavioral deficits and memory, we examined the motor function and memory by using Morris water maze and Forced swimming test. Ischemic mouse brain stained with TTC(2,3,5 triphenyl tetrazolium chloride) in the MPTP-induced Parkinson's disease to find out ischemia and tissue damage in mouse. The convenient, simple, and accurate high-performance liquid chromatography (HPLC) method was established for simultaneous determination of neurotransmitters in MPTP-HY group. To measure the amount of dopamine in mice brain, striatum-substantia nigra, was examined by Bradford assay. Immunohistochemistry was examined in the MPTP-induced Parkinson's disease (PD) mouse to evaluate the neuroprotective effects of Hyangsayangwi-tang on hippocampal lesion, ST and SNpc. Results and Conclusions Hyangsayangwi-tang (HY) prevents MPTP-induced loss of serotonin, hippocampus and TH-ir cell.

Bone healing dynamics associated with 3 implants with different surfaces: histologic and histomorphometric analyses in dogs

  • Lee, Jungwon;Yoo, Jung Min;Amara, Heithem Ben;Lee, Yong-Moo;Lim, Young-Jun;Kim, Haeyoung;Koo, Ki-Tae
    • Journal of Periodontal and Implant Science
    • /
    • v.49 no.1
    • /
    • pp.25-38
    • /
    • 2019
  • Purpose: This study evaluated differences in bone healing and remodeling among 3 implants with different surfaces: sandblasting and large-grit acid etching (SLA; IS-III $Active^{(R)}$), SLA with hydroxyapatite nanocoating (IS-III $Bioactive^{(R)}$), and SLA stored in sodium chloride solution ($SLActive^{(R)}$). Methods: The mandibular second, third, and fourth premolars of 9 dogs were extracted. After 4 weeks, 9 dogs with edentulous alveolar ridges underwent surgical placement of 3 implants bilaterally and were allowed to heal for 2, 4, or 12 weeks. Histologic and histomorphometric analyses were performed on 54 stained slides based on the following parameters: vertical marginal bone loss at the buccal and lingual aspects of the implant (b-MBL and l-MBL, respectively), mineralized bone-to-implant contact (mBIC), osteoid-to-implant contact (OIC), total bone-to-implant contact (tBIC), mineralized bone area fraction occupied (mBAFO), osteoid area fraction occupied (OAFO), and total bone area fraction occupied (tBAFO) in the threads of the region of interest. Two-way analysis of variance (3 types of implant $surface{\times}3$ healing time periods) and additional analyses for simple effects were performed. Results: Statistically significant differences were observed across the implant surfaces for OIC, mBIC, tBIC, OAFO, and tBAFO. Statistically significant differences were observed over time for l-MBL, mBIC, tBIC, mBAFO, and tBAFO. In addition, an interaction effect between the implant surface and the healing time period was observed for mBIC, tBIC, and mBAFO. Conclusions: Our results suggest that implant surface wettability facilitates bone healing dynamics, which could be attributed to the improvement of early osseointegration. In addition, osteoblasts might become more activated with the use of HA-coated surface implants than with hydrophobic surface implants in the remodeling phase.