• Title/Summary/Keyword: chloride loss

Search Result 231, Processing Time 0.027 seconds

Analysis of solar radiation and simulation of thermal environment in plastic greenhouse -Simulation of thermal environment in plastic greenhouse- (플라스틱 온실(温室)의 일사량(日射量) 분석(分析)과 열적(熱的) 환경(環境)의 시뮬레이션에 관(關)한 연구(硏究) -플라스틱 온실(温室)의 열적환경(熱的環境)의 시뮬레이션-)

  • Park, J.B.;Koh, H.K.
    • Journal of Biosystems Engineering
    • /
    • v.12 no.2
    • /
    • pp.16-27
    • /
    • 1987
  • Greenhouse farming was introduced to the Korean farmers in the middle of 1950's and its area has been increased annually. The plastic greenhouse, which is covered with polyethylene or polyvinyl chloride film, has been rapidly spread in greenhouse farming since 1970. The greenhouse farming greatly contributed to the increase of farm household income and the improvement of crop productivity per unit area. Since the greenhouse farming is generally practiced during winter, from November to March, the thermal environment in the plastic greenhouse should be controlled in order to maintain favorable condition for plant growing. Main factors that influence the thermal environment in the plastic greenhouse are solar radiation, convective and radiative heat transfer among the thermal component of the greenhouse, and the use of heat source. The objective of this study was to develop a simulation model for thermal environment of the plastic greenhouse in order to determine the characteristics of heat flow and effects of various ambient environmental conditions upon thermal environments within the plastic greenhouse. The results obtained are summarized as follows: 1. Simulation model for thermal environment of the plastic greenhouse was developed, resulting in a good agreement between the experimental and predicted data. 2. Solar radiation being absorbed in the plant and soil during the daytime was 75 percent of the total solar radiation and the remainder was absorbed in the plastic cover. 3. About 83 percent of the total heat loss was due to convective and radiative heat transfer through the plastic cover. Air ventilation heat loss was 5 to 6 percent of total heat loss during the daytime and 16 to 17 percent during the night. 4. The effectiveness of thermal curtain for the plastic greenhouse at night was significantly increased by the increase of the inside air temperature of the greenhouse due to the supplementary heat. 5. When the temperature difference between the inside and outside of the greenhouse was small, the variation of ambient wind velocity did not greatly affect on the inside air temperature. 6. The more solar radiation in the plastic greenhouse was, the higher the inside air temperature. Because of low heat storage capacity of the plant and soil inside the greenhouse and a relatively high convective heat loss through the plastic cover, the increase of solar radiation during the daytime could not reduce the supplymentary heat requirement for the greenhouse during the night.

  • PDF

Synthesis of Newel Self-Developing Photosensitive Polyimide

  • Ahn, Byung-Hyun;Lee, Dae-Woo;Lee, Jin-Kook;Hong, Seong-Soo;Lee, Gun-Dae
    • Macromolecular Research
    • /
    • v.8 no.1
    • /
    • pp.19-25
    • /
    • 2000
  • Aromatic diamine monomers containing allylic ester linkage, 1,5-bis(4-aminobenzoate)-1,2,3,4-tetrahydronaphthalene (4-DABTN) and 1,5-bis(3-amin obenzoate)-1,2,3,4-tetrahydronaphthalene (3-DABTN) were synthesized through the reaction of 1,5-dihydroxy-1,2,3,4-tetrahydronaphthalene and 4- or 3-nitrobenzoly chloride. By the reaction of these diamines with pyromellitic dianhydride (PMDA) or 4,4-(hexafluoroisopropylidene)diphthalic anhydride (6FDA), poly(amic acid)s were obtained. The inherent viscosities of the poly(amic acid)s were between 0.55 and 1.31 dL/g. The poly(amic acid)s were converted to polyimides by chemical imidization. The thermogravimetric analysis (TGA) thermograms of these polyimides showed temperatures of 5% weight loss between 323 and 389$^{\circ}C$ in nitrogen atmosphere. The model compound ,1,5-bis (4-nitrobenzoate)-1,2,3,4-tetrahydronaphthalene (4-DNBTN), was decomposed to 4-nitrobenzoic acid and 5-(4-nitrobenzoate)-3,4-dihydronaphthalene upon addition of CF$_3$COOH.

  • PDF

Design and Performance Evaluation of a Faraday Cage and an Aerosol Charger (패러데이 케이지와 에어로졸 하전기의 설계 및 성능평가)

  • Ji, Jun-Ho;Bae, Kwi-Nam;Hwang, Jung-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.3
    • /
    • pp.315-323
    • /
    • 2004
  • An electrical cascade impactor is a multi-stage impaction device to separate airborne particles into aerodynamic size classes using particle charging and electrical detection techniques. A Faraday cage and an aerosol charger, which are basic components of the electrical cascade impactor, were designed and evaluated in this study. The low-level current response of the Faraday cage was investigated with changing particle size and air flow rate by using sodium chloride (NaCl) particles. The response of the prototype Faraday cage was very similar to that of a commercial aerosol electrometer (TSI model 3068) within ${\pm}$5% for singly-charged particles. The response linearity of the prototype Faraday cage could be extended up to flow rate of 30 L/min. For the performance evaluation of the aerosol charger the monodisperse liquid dioctyl sebacate (DOS) particles, with diameters of 0.1∼0.8$\mu\textrm{m}$, were generated using spraying from an atomizer followed by evaporation-condensation process. Typical performance parameters of the aerosol charger such as P$.$n, wall loss, and elementary charges per particle were evaluated. The performance of the prototype aerosol charger was found to be close to that of the aerosol charger used in an electrical low pressure impactor (ELPI, Dekati).

An Electron Microscopic Study on the Effect of Calcium-free Reperfusion in Isolated Perfused Guinea Pig Heart after Global Ischemia (허혈후 칼슘 결핍 용액의 재관류가 적출 관류 기니픽 심근 세포에 미치는 영향에 관한 전자현미경적 관찰)

  • Oh, Seung-Hwan;Kim, Ho-Dirk;Rah, Bong-Jin
    • Applied Microscopy
    • /
    • v.20 no.1
    • /
    • pp.65-76
    • /
    • 1990
  • The effect of calcium-free reperfusion for 5, 10, and 15 minutes, respectively, followed by continuous reperfusion with normal Tyrode solution containing 1.0mM calcium chloride, after global ischemia in the isolated perfused guinea pig heart by Langendorff techniques was examined with transmission electron microscope. Compared to the nomal Tyrode solution-perfused control hearts, the 5 minute calcium-free-reperfused hearts showed loss or thickening of Z lines, focal sarcolemmal disruption, mitochondrial swelling, clumping of chroma-tin, intracellular fluid accumulation, and some separation of cell junctions, especially the fasciae adherentes. These changes became more severe in the hearts of 10 minute calcium-free reperfusion. Subsarcolemmal larger bleb and near complete separation of cell junctions were noticed. In the 15 minute calcium-free-reperfused hearts, irreversible ultrastructural changes including contraction bands, biazrre mitochondria, and sarcolemmal destruction were widely distributed. The severity of myocardial changes were in accordance with the duration of calcium-free reperfusion. These changes indicate that calcium-free reperfusion regardless of its duration could not salvage the post-ischemic myocardium probably due to development of calcium paradox.

  • PDF

Synthesis of Polyimides Derived from 2,2-Bis[4-(4-aminobenzoyl)phenoxy]hexafluoropropane and Aromatic Dianhydrides (2,2-Bis[4-(4-nitrobenzoyl)phenoxy]hexafluoropropane과 방향족 이무수물을 사용한 폴리이미드의 합성)

  • Park, Jung Hye;Ahn, Byung Hyun
    • Applied Chemistry for Engineering
    • /
    • v.27 no.1
    • /
    • pp.50-55
    • /
    • 2016
  • Aromatic diamines containing hexafluoroisopropylidene and ester moiety were synthesized from 4,4'-hexafluoroisopropylidene diphenol and nitrobenzoyl chloride. The reaction of aromatic diamines with hexafluoroisopropylidene phthalicdianhydride (6FDA) or pyromellitic dianhydride (PMDA) gave four kinds of poly(amic acid)s. Their inherent viscosities ranged from 0.196 to 0.346 dL/g. Poly(amic acid)s were converted to polyimides by thermal imidization. The glass transition temperatures ($T_g$) of polyimides were between 241 and $289^{\circ}C$. The 5% weight loss temperatures were recorded in the range of $430{\sim}492^{\circ}C$. The tensile strength of polyimide films were measured as 29.84~64.38 MPa.

Galvanic Sensor System for Detecting the Corrosion Damage of the Steel in Concrete

  • Kim, Jung-Gu;Park, Zin-Taek;Yoo, Ji-Hong;Hwang, Woon-Suk
    • Corrosion Science and Technology
    • /
    • v.3 no.3
    • /
    • pp.118-126
    • /
    • 2004
  • The correlation between sensor output and corrosion rate of reinforcing steel was evaluated by laboratory electrochemical tests in saturated $Ca(OH)_2$ with 3.5 wt.% NaCl and confirmed in concrete environment. In this paper, two types of electrochemical probes were developed: galvanic cells containing of steel/copper and steel/stainless steel couples. Potentiodynamic test, weight loss measurement, monitoring of open-circuit potential, linear polarization resistance (LPR) measurement and electrochemical impedance spectroscopy (EIS) were used to evaluate the corrosion behavior of steel bar embedded in concrete. Also, galvanic current measurements were conducted to obtain the charge of sensor embedded in concrete. In this study, steel/copper and steel/stainless steel sensors showed a good correlation in simulated concrete solution between sensor output and corrosion rate of steel bar. However, there was no linear relationship between steel/stainless steel sensor output and corrosion rate of steel bar in concrete environment due to the low galvanic current output. Thus, steel/copper sensor is a reliable corrosion monitoring sensor system which can detect corrosion rate of reinforcing steel in concrete structures.

Laboratory Simulation of Corrosion Damage in Reinforced Concrete

  • Altoubat, S.;Maalej, M.;Shaikh, F.U.A.
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.3
    • /
    • pp.383-391
    • /
    • 2016
  • This paper reports the results of an experimental program involving several small-scale columns which were constructed to simulate corrosion damage in the field using two accelerated corrosion techniques namely, constant voltage and constant current. A total of six columns were cast for this experiment. For one pair of regular RC columns, corrosion was accelerated using constant voltage and for another pair, corrosion was accelerated using constant current. The remaining pair of regular RC columns was used as control. In the experiment, all the columns were subjected to cyclic wetting and drying using sodium chloride (NaCl) solution. The currents were monitored on an hourly interval and cracks were visually checked throughout the test program. After the specimens had suffered sufficient percentage steel loss, all the columns including the control were tested to failure in compression. The test results generated show that accelerated corrosion using impressed constant current produces more corrosion damage than that using constant voltage. The results suggest that the constant current approach can be better used to simulate corrosion damage of reinforced concrete structures and to assess the effectiveness of various materials, repair strategies and admixtures to resist corrosion damage.

Effects of Cooking Conditions on the Protein Quality of Chub Mackerel Scomber japonicus

  • Oduro, Frieda A.;Choi, Nam-Do;Ryu, Hong-Soo
    • Fisheries and Aquatic Sciences
    • /
    • v.14 no.4
    • /
    • pp.257-265
    • /
    • 2011
  • The effects of cooking method (grilling, frying, steaming, and microwaving) on the proximate composition and protein quality of chub mackerel Scomber japonicus treated with 2, 6, and 10% sodium chloride (NaCl) brine were investigated. Moisture content decreased in all cooked samples from 60.22% in the raw sample to 48.7% in the fried samples. Brine (10% NaCl) treatment recorded the highest moisture loss. All cooked samples showed a decrease in fat content, except fried samples. Protein content increased in all cooked samples, from 47.21% in the raw sample to 63.87% in the grilled sample. Brine treatment resulted in the highest degree of fat oxidation (thiobarbituric acid-reactive substances), which was highest in the fried samples and lowest in the microwaved samples. The trypsin inhibitor (TI) concentration was highest in the microwaved samples and lowest in the fried samples. In all samples, 6% salt treatment caused the lowest TI level and the highest in vitro protein digestibility. In vitro digestibility increased from 79.4% in the raw sample to 86.43% in the fried samples. The total essential amino acids of all cooked samples increased. Results suggested that grilling and steaming had beneficial effects on the protein quality of chub mackerel.

A Study on the Corrosion Inhibition Effects of Sodium Heptanoate for Carbon Steel in Aqueous Solution

  • Won, D.S.;Kho, Y.T.
    • Corrosion Science and Technology
    • /
    • v.3 no.6
    • /
    • pp.227-232
    • /
    • 2004
  • The carboxylates as a corrosion inhibitor has been studied by many researchers because of its environmental safety and low depletion rate. However, conventional test methods of inhibitor such as weight loss measurements, linear polarization resistance and corrosion potential monitoring etc., evaluate uniform corrosion of metals. These methods are unable to evaluate crevice-related corrosions, which are encountered in most of heat exchanging facilities. In order to choose the optimum corrosion inhibitor, the appropriate test methods are required to evaluate their performances in service environment. From this point of view, polarization technique was used to evaluate the characteristics of sodium heptanoate on corrosion behavior for carbon steel. Especially a thin film crevice sensor technique were applied to simulate the crevice corrosion in this study. From these experiments, we found that oxygen as an oxidizing agent was required to obtain stable passive film on the metal. Presence of oxygen, however, accelerated crevice corrosion. Potential shift by oxygen depletion and weakened inhibitive film inside the crevice were responsible for such accelerated feature. It is shown that film for corrosion inhibition is a mixture of sodium heptanoate and iron (II) heptanoate as reaction product of iron surface and sodium heptanoate. The iron (II) heptanoate which has been synthesized by reaction of heptanoic acid and ferrous chloride in methanol solution forms bidentate complex.

Effects of Samultang on Glutamate-Induced Apoptosis of Hippocampus Cells (사물탕(四物湯)이 Glutamate에 의한 해마세포의 손상에 미치는 영향)

  • Jeong, Dae-Young;Choi, Chul-Won;Moon, Byung-Soon
    • The Journal of Korean Medicine
    • /
    • v.30 no.1
    • /
    • pp.64-75
    • /
    • 2009
  • Objective: This study was designed to investigate the effect of Samultang (SMT) under hippocampus cells ischemia both in vitro and in vivo. Methods: In the in vitro study, HT22 cells, predominantly detected in the cytoplasm, which coincides with the location of the mitochondria, were used as indicators. In the in vivo study, permanent middle cerebral artery occlusion (MCAO) was induced on rats. SMT was given orally 2 h before induction of permanent focal brain ischemic injury. Result: In the in vitro study, SMT had protective effects in glutamate-induced cytotoxicity, which was revealed as apoptosis characterized by chromatic condensation and the loss of mitochondrial membrane potential in HT22 cells. In the in vivo study, TTC (2,3,5-triphenyltetrazolium chloride) staining showed a marked ischemic injury in blood supply territory of the middle cerebral artery (MCA) such as the cerebral cortex and striatum. However, treatment with SMT significantly reduced infarcted volume. SMT increased marked survival of HT22 cells against glutamate-induced cytotoxicity in MTT assay. Conclusion: These results suggest that water extract of SMT provides neuroprotection against ischemic or oxidative injury by inhibition of apoptotic cell death.

  • PDF