• Title/Summary/Keyword: chloride diffusion coefficient

Search Result 265, Processing Time 0.027 seconds

An Experimental Study on Evaluation of Coefficient of Chloride Diffusion by Electrochemical Accelerated Test in Concrete (전기화학적 촉진법에 의한 콘크리트의 염화물이온 확산계수 평가에 관한 실험적 연구)

  • 조봉석;김갑수;김재환;김용로;권영진;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.705-710
    • /
    • 2003
  • In this study, to confirm the diffusion coefficient of chloride ion is affected by the concentration of NaCl solution, capacity of voltage, time of an electric current, the diffusion coefficient of chloride ion in concrete was investigated through an electrochemical accelerated test. and the results of these test were compared with the diffusion coefficient of chloride ion by test of sodium chloride solution digestion. As the results of this study, the diffusion coefficient of chloride ion wasn't affected by the concentration of NaCl solution, capacity of voltage, time of an electric current within the range of this study and was similar to the diffusion coefficient of chloride ion by test of sodium chloride solution digestion.

  • PDF

Evaluation of Diffusion Property of Latex Modified Concrete (LMC(Latex Modified Concrete)의 염소이온 확산 특성)

  • Park, Sung-Ki;Won, Jong-Pil;Park, Chan-Gi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.50 no.4
    • /
    • pp.27-37
    • /
    • 2008
  • It is most serious problem which is various occurs from the agricultural concrete structure and off shore concrete structure the problem which it comes to think is deterioration of the concrete which is caused with the corrosion of the reinforcing steel which is caused by with permeation of the water and the sea water. Specially the off shore concrete structure has been deteriorated by the steel reinforcement corrosion. The latex modified concrete(LMC) was adds latex in the plain concrete as the latex has increase the durability of concrete. This study were accomplished to the estimate the diffusion coefficient of LMC, and the time dependent constants of diffusion. The average chloride diffusion coefficient was estimated. Also, the average chloride diffusion coefficient was compared with diffusion coefficient test results of 28 curing days. The test results indicated that the average chloride diffusion coefficient could closely estimate the test results of the diffusion coefficient test results of 28 curing days.

Two Dimensional Chloride Ion Diffusion in Reinforced Concrete Structures for Railway

  • Kang, Bo-Soon;Shim, Hyung-Seop
    • International Journal of Railway
    • /
    • v.4 no.4
    • /
    • pp.86-92
    • /
    • 2011
  • Chloride ion diffusion at the corner of rectangular-shaped concrete structures is presented. At the corner of rectangular-shaped concrete, chloride ion diffusion is in two-dimensional process. Chloride ions accumulate from two orthogonal directions, so that corrosion-free life of concrete structures is significantly reduced. A numerical procedure based on finite element method is used to solve the two-dimensional diffusion process. Orthotropic property of diffusion coefficient of concrete is considered and chloride ion profile obtained from numerical analysis is used to produce transformed diffusion coefficient. Comparisons of experimental data are also carried out to show the reliability of proposed numerical analysis. As a result of two-dimensional chloride diffusion, corrosion-free life of concrete structure for railway is estimated using probability of corrosion initiation. In addition, monographs that produces transformed diffusion coefficient and corrosion-free life of concrete structure are made for maintenance purpose.

  • PDF

Effects of Concrete Properties and Testing Method! on Coefficient of Chloride Diffusion in Hardened Concrete (콘크리트 물성 및 시험법이 콘크리트 염화물 확산 계수에 미치는 영향)

  • 김명유;양은익;최중철;이광교;민석홍;이성태
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.699-704
    • /
    • 2003
  • Corrosion of reforcement is the main cause of damage and early failure of reinforced concrete structures. The corrosion is mainly progressed by the chloride ingress. In this paper, an experimental study is executed to investigate the effect of concrete properties and testing method on the coefficient of chloride diffusion. Also, it is compared that the relationship between total chloride and free chloride in concrete. According to this experiment results, w/c ratio and testing method effect on chloride diffusion coefficient of concrete. As w/c ratio is increased, diffusion coefficient in concrete is also increased. Diffusion coefficient obtained by each testing method show the different value, respectively. Also, the content of free chloride in 7days curing concrete is increased as w/c ratio is increased.

  • PDF

An experimental study on Influence of Permeability on corrosion of reinforced Concrete (철근콘크리트의 부식에 영향을 미치는 물질 투과성능에 관한 실험적 연구)

  • 김용로;김영덕;조봉석;장종호;권영진;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.62-65
    • /
    • 2003
  • In this study, to confirm corrosion of reinforced concrete affected by carbonation, chloride ion diffusion, absorption ratio, air permeability, measured carbonation velocity coefficient, chloride ion diffusion coefficient, absorption coefficient, air permeability coefficient. Corrosion velocity under environment of complex deterioration. And than compared corrosion velocity with these coefficients. As the results of this study, the correlation coefficient between chloride ion diffusion coefficients and absorption coefficient was revealed that it is very high. As well, an increase in carbonation, chloride ion diffusion also increases corrosion velocity. It showed that corrosion velocity was affected by the carbonation, chloride ion diffusion, absorption ratio, air permeability. Generally, data on the development of these coefficient made with none, organic B, organic A, inorganic B, and inorganic A is shown. It showed that coating of surface prevent steel bar from deteriorating.

  • PDF

A Study on Chloride Diffusion in Concrete Containing Lightweight Aggregate Using Crushed Stone-powder (폐석분을 활용한 경량골재 콘크리트의 염화물 확산에 관한 연구)

  • Lee, Dae-Hyuk;Jee, NamYong;Kim, Jae-Hun;Jeong, Yong;Shin, Jae-Kyung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.11a
    • /
    • pp.127-131
    • /
    • 2009
  • The purpose of this study is to provide fundamental data on chloride diffusion from lightweight aggregate concrete by utilizing crushed stone-powder. Accordingly, the study performed experiments using concrete aggregates of Crushed Aggregate (CG), Single-sized Lightweight Aggregate (SLG), Continuous Graded Lightweight Aggregate (CLG), and using water-binder ratio of 0.4, 0.5, 0.6, and using binder of FA and BFS. The chloride diffusion coefficient is calculated after experiment based on NT BUILD 492. Diffusion coefficient of SLG and CLG were little bit higher than CG Concrete, but the difference is meaningless. Also, chloride diffusion coefficient indicates that it is highly affected by water-binder ratio, and it decreases with the decrease in water-binder ratio. The admixture substitution indicates decrease only with water-binder ratio of 0.4 for FA15% case, but admixture substitution indicates decrease with all levels of ratio for FA10 + BFS20% which means more appropriate. According to the analysis result of chloride diffusion from lightweight aggregate concrete, crushed stone-powder utilized lightweight aggregate concrete indicates higher chloride diffusion coefficient than CG concrete, which is not a significant difference, and can improve resistance through water-binder ratio and admixture substitution.

  • PDF

Characteristic of Chloride Ion Diffusion in Concrete Containing GGBF (고로슬래그미분말 혼합 콘크리트의 염소이온 확산특성)

  • 문한영;김홍삼;김진철;최두선
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.793-796
    • /
    • 2001
  • Physical properties of concrete, Such as, compressive strength, permeable pore and penetration depth of chloride ion were investigated. And to investigate the effect of containing GGBF in concrete, the diffusion coefficient of chloride was measured through an electro- migration test. The diffusion coefficient of chloride was decreased with increase of replacement ratios of GGBF when compared to OPC. Relation coefficients between physical properties of concrete and diffusion coefficient of chloride were more than 0.9.

  • PDF

Prediction of Corrosion Threshold Reached at Steel Reinforcement Embedded in Latex Modified Concrete with Mix Proportion Factor (배합변수에 따른 라텍스 개질 콘크리트 내에 정착된 보강철근의 부식개시시기 예측)

  • Park, Seung-Ki;Won, Jong-Pil;Park, Chan-Gi;Kim, Jong-Ok
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.50 no.6
    • /
    • pp.49-60
    • /
    • 2008
  • This study were predicted the corrosion threshold reached at steel reinforcement in latex modified concrete(LMC) which were applied the agricultural hydraulic concrete structures. Accelerated testing was accomplished to the evaluate the diffusion coefficient of LMC mix, and the time dependent constants of diffusion. Also, the average chloride diffusion coefficient was estimated. From the average chloride ion diffusion coefficient, the time which critical chloride contents at depth of reinforcement steel was estimated. Test results indicated that the corrosion threshold reached at reinforcement in LMC were effected on the mix proportion factor including cement contents, latex content, and water-cement ratio. Especially, the average chloride diffusion coefficient, the corrosion threshold reached at reinforcement in LMC were affected by the all mix proportion factor.

The Penetration and Diffusivity of Chloride ion into Concrete using Blended Cement (혼합계시멘트를 사용한 콘크리트의 염화물이온 침투 및 확산특성)

  • Yang, Seung-Kyu;Kim, Dong-Seuk;Um, Tai-Sun;Lee, Jong-Ryul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.489-492
    • /
    • 2006
  • A chloride is an important deteriorating factor which governs the durability of the reinforced-concrete structures under marine environments. Also, the main penetration mechanism of chloride ion into concrete is a diffusion phenomenon and numerous methods have been proposed to determine the diffusion coefficient of chloride ion quickly. In this study, electrically accelerated experiments were carried out in order to evaluate diffusion coefficient of the chloride ion into concrete. The methods were diffusion cell test method in which the voltage of 15V(DC) was applied. The type of cement is blended cement in which the admixtures of blast-furnace slag and fly ash were used. In conclusion, the diffusion coefficient of chloride ion is much affected according to mineral admixtures and the diffusion coefficient of ternary blended cement showed very low values. it is presumably said that this result is due to highly densified pore structures by the aid of slag substitution and pozzolanic activity of fly ash.

  • PDF

Comparison Study on Electric Acceleration Test Method for Estimation of Chloride Diffusion Coefficient (염화물 확산 평가를 위한 전기적 실험법의 비교 연구)

  • Choi, Yoon-Suk;Choi, Sung-Ha;Kim, Myung-Yu;Yang, Eun-Ik;Yi, Seong-Tae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.257-260
    • /
    • 2005
  • A general electric acceleration testing method for estimation of chloride diffusion coefficient is RCPT and CTH. Also, this testing methods have merit that reduce the testing time. In this paper, an experimental study is executed to investigate the effect of testing method on coefficient of chloride diffusion and it is compared with RCPT and CTH. According to this experiment results, W/C ratio and testing method influence chloride diffusion coefficient of concrete. As W/C ratio is increased, diffusion coefficient in concrete is also increased. Diffusion coefficient obtained by each testing method show the different values. However, there is no remarkable difference between the two testing method.

  • PDF