• Title/Summary/Keyword: chloride binding

Search Result 156, Processing Time 0.208 seconds

Diagnostic Value of the Cobalt($^{58}Co$) Excretion Test in Iron Deficiency Anemia (철결핍성빈혈(鐵缺乏性貧血)에서 Cobalt($^{58}Co$)배설율검사(排泄率檢査)의 진단적(診斷的) 가치(價値))

  • Sihn, Hyun-Chung;Hong, Kee-Suck;Cho, Kyung-Sam;Song, In-Kyung;Koh, Chang-Soon;Lee, Mun-Ho
    • The Korean Journal of Nuclear Medicine
    • /
    • v.10 no.1
    • /
    • pp.21-34
    • /
    • 1976
  • The diagnosis of iron deficiency rests upon the correct evaluation of body iron stores. Morphological interpretation of blood film and the red cell indices are not reliable and often absent in mild iron deficiency. Serum iron levels and iron-binding capacity are more sensitive indices of iron deficiency, but they are often normal in iron depletion and mild iron deficiency anemia. They are also subject to many variables which may introduce substantial errors and influenced by many pathologic and physiologic states. Examination of the bone marrow aspirate for stainable iron has been regarded as one of the most sensitive and reliable diagnostic method for detecting iron deficiency, but this also has limitations. Thus, there is still need for a more practical, but sensitive and reliable substitute as a screening test of iron deficiency. Pollack et al. (1965) observed that the intestinal absorption of cobalt was raised in iron-deficient rats and Valberg et al. (1969) found that cobalt absorption was elevated in patients with iron deficiency. A direct correlation was demonstrated between the amounts of radioiron and radiocobalt absorbed. Unlike iron, excess cobalt was excreted by the kidney, the percentage of radioactivity in the urine being directly related to the percentage absorbed from the gastrointestinal tract. Recently a test based on the urinary excretion of an oral dose of $^{57}Co$ has been proposed as a method for detecting iron deficiency. To assess the diagnostic value of urinary cobalt excretion test cobaltous chloride labelled with $1{\mu}Ci\;of\;^{58}Co$ was given by mouth and the percentage of the test dose excreted in the urine was measured by a gamma counter. The mean 24 hour urinary cobalt excretion in control subjects with normal iron stores was 6.1% ($1.9{\sim}15.2%$). Cobalt excretion was markedly increased in patients with iron deficiency and excreted more than 29% of the dose. In contrast, patients with anemia due to causes other than iron deficiency excreted less than 27%. Hence, 24 hour urinary cobalt excretion of 27% or less in a patient with anemia suggets that the primary cause of the anemia is not iron deficiency. A value greater than 27% in an anemic subject suggests that the anemia is caused by iron deficiency. The cobalt excretion test is a simple, sensitive and accurate method for the assessment of body iron stores. It may be particularly valuable in the epidemiological studies of iron deficiency and repeated evaluations of the body iron stores.

  • PDF

Cell Patterning on Various Substrates Using Polyelectrolyte Multilayer and Microstructure of Poly(Ethylene Glycol) (다양한 기판 위에서 고분자 전해질 다층 막과 폴리에틸렌글리콜 미세 구조물을 이용한 세포 패터닝 방법)

  • Shim, Hyun-Woo;Lee, Ji-Hye;Choi, Ho-Suk;Lee, Chang-Soo
    • Korean Chemical Engineering Research
    • /
    • v.46 no.6
    • /
    • pp.1100-1106
    • /
    • 2008
  • In this study, we presented rapid and simple fabrication method of functionalized surface on various substrates as a universal platform for the selective immobilization of cells. The functionalized surface was achieved by using deposition of polyelectrolyte such as poly(allyamine hydrochloride) (PAH), poly(diallyldimethyl ammonium chloride) (PDAC), poly(4-ammonium styrene sulfonic acid) (PSS), poly(acrylic acid) (PAA) and fabrication of poly(ethylene glycol) (PEG) microstructure through micro-molding in capillaries (MIMIC) technique on each glass, poly(methyl methacrylate) (PMMA), polystyrene (PS) and poly(dimethyl siloxane) (PDMS) substrate. The polyelectrolyte multilayer provides adhesion force via strong electrostatic attraction between cell and surface. On the other hand, PEG microstructures also lead to prevent non-specific binding of cells because of physical and biological barrier. The characteristic of each modified surface was examined by using static contact angle measurement. The modified surface onto several substrates provides appropriate environment for cellular adhesion, which is essential technology for cell patterning with high yield and viability in the micropatterning technology. The proposed method is reproducible, convenient and rapid. In addition, the fabrication process is environmentally friendly process due to the no use of harsh solvent. It can be applied to the fabrication of biological sensor, biomolecules patterning, microelectronics devices, screening system, and study of cell-surface interaction.

Molecular Cloning and Expression of a Cu/Zn-Containing Superoxide Dismutase from Thellungiella halophila

  • Xu, Xiaojing;Zhou, Yijun;Wei, Shanjun;Ren, Dongtao;Yang, Min;Bu, Huahu;Kang, Mingming;Wang, Junli;Feng, Jinchao
    • Molecules and Cells
    • /
    • v.27 no.4
    • /
    • pp.423-428
    • /
    • 2009
  • Superoxide dismutases (SODs) constitute the first line of cellular defense against oxidative stress in plants. SODs generally occur in three different forms with Cu/Zn, Fe, or Mn as prosthetic metals. We cloned the full-length cDNA of the Thellungiella halophila Cu/Zn-SOD gene ThCSD using degenerate RT-PCR and rapid amplification of cDNA ends (RACE). Sequence analysis indicated that the ThCSD gene (GenBank accession number EF405867) had an open reading frame of 456 bp. The deduced 152-amino acid polypeptide had a predicted molecular weight of 15.1 kDa, an estimated pI of 5.4, and a putative Cu/Zn-binding site. Recombinant ThCSD protein was expressed in Escherichia coli and assayed for SOD enzymatic activity in a native polyacrylamide gel. The SOD activity of ThCSD was inactivated by potassium cyanide and hydrogen peroxide but not by sodium azide, confirming that ThCSD is a Cu/Zn-SOD. Northern blotting demonstrated that ThCSD is expressed in roots, stems, and leaves. ThCSD mRNA levels increased by about 30-fold when plants were treated with sodium chloride (NaCl), abscisic acid (ABA), and indole-acetic acid (IAA) and by about 50-fold when treated with UVB light. These results indicate that ThCSD is involved in physiological pathways activated by a variety of environmental conditions.

Measurement of the Levels of IgG Subclasses Reactive to Salmonella typhi in the Sera of Patients with Typhoid Fever (장티푸스환자의 혈청내 Salmonella typhi에 대한 IgG subclass항체의 분포)

  • Kim, Young-Jung;Hwang, Eung-Soo;Kang, Jae-Seung;Cha, Chang-Yong;Chang, Woo-Hyun;Kim, Yoon-Won;Cho, Min-Ki;Min, Chang-Hong
    • The Journal of the Korean Society for Microbiology
    • /
    • v.21 no.4
    • /
    • pp.447-453
    • /
    • 1986
  • To diagnose the typhoid fever rapidly and accurately in clinically suspected patients, the levels of IgG subclass antibody were measured by enzyme-linked immunosorbent assay(ELISA). With symptom, blood culture and agglutination test, tested persons were categorized into 6 groups as typhoid fever, FUO, paratyphi A or B, other bacterial infctions, cancers, and control. ELISA was performed on the polyvinyl chloride plates coated with killed whole cell($10^8\;cell/ml$) of S. typhi 0901W by poly-L-lysine applied as binding substance (and polyvinyl chloride as solid phase). The distribution of the level of IgG subclass antibodies in each group was analyzed and compared with other groups. The results obtained were summarized as follow: 1. The optimal dilution of the sera from patients with typhoid fever was 1:160, and those of the sheep anti-human IgG subclass and the peroxidase conjugated rabbit anti-sheep IgG were 1:4000 and 1:5000, respectively. 2. The absorbance levels of IgG subclass in the sera of typhoid fever patients were as follows; a) IgG1 value is $0.439{\pm}0.110$ b) IgG2 value is $0.416{\pm}0.165$ c) IgG3 value is $0.449{\pm}0.145$ d) IgG4 value is $0.525{\pm}0.154$ IgG subclass levels in the sera of typhoid patients were much higher than in control group and patient with paratyphi A or B as well as other infectious diseases. The sensitivity and the specificity in differential diagnosis of typhoid fever and other febrile diseases were 92% and 79% in the assay of IgG1 respectively, whereas those in the assay of IgG2 were 97% and 72%, respectively (above absorbance 0.3). 3. The absorbance levels of IgG subclass in the serial sera of typhiod fever patients tend to decrease to the level of absorbance 0.3 in 10 months from the onset of illness. 4. The order of absorbance levels of IgG subclass in the serum of each group were typhoid fever, paratyphi A or B, other infectious diseases, control and cancer. 5. For the serodiagnosis of typhoid fever against other febrile diseases, the sensitivity and the specificity in the assay of IgG2 activity were 76% and 93% in absorbance 0.4, respectively. 6. In the distribution of the level of each IgG subclass in the sera of FUO patients which were suspected of typhoid fever, the positive rate was ranged from 36% to 82%. This suggest that more than 50% of FUO patients are caused by S. typhi.

  • PDF

Effect of Additives on the Physicochemical Properties of Acetaminophen Liquid Suppository (아세트아미노펜 액상좌제의 물리화학적 특성에 미치는 첨가제의 영향)

  • Choi, Han-Gon;Jung, Jae-Hee;Ryu, Jei-Man;Lee, Mi-Kyung;Kim, In-Sook;Lee, Beom-Jin;Kim, Chong-Kook
    • YAKHAK HOEJI
    • /
    • v.42 no.3
    • /
    • pp.290-295
    • /
    • 1998
  • To optimize the formulation of acetaminophen liquid suppository, the effect of additives on the physicochemical properties of liquid suppository base was investigated. The physi cochemical properties of P 407/P 188 (15/15%) (abbreviated in 15/15) and P 407/P l88 (15/20%) (abbreviated in 15/20) were measured after the addition of following additives; 2.5% acetaminophen as an active ingredient, vehicle components (5% ethanol, 5% propylene glycol, 5% glycerin), preservatives (0.1% sodium benzoate, 0,1% methylparahydroxybenzoate, 0.1% propylparahydroxybenzoate) and 1% of sodium chloride as an ionic strength controlling agent. Poloxamer gel was prepared with three different buffer solutions (pH 1.2, 4.0 and 6.8) and the physicochemical properties, gelation temperature, gel strength and bioadhesive force, were determined. In the results, the effect of additives on the physicochemical properties was dependent on their bonding capacities including hydrogen bonding and cross-linking bonding. Because the hydrogen-bonding capacities of acetaminophen, ethanol and propylene glycol were smaller than that of poloxamer, the binding force of poloxamer gel became weak by their putting in between poloxamer gel. Therefore, the gelation temperature (15/15, $35.7^{\circ}C$ vs 37.0, 39.4 $38.2^{\circ}C$; 15/20, $29.2^{\circ}C$ vs 31.2, 32.0, $30.3^{\circ}C$) increased, and gel strength (15/15, 4.03 see vs 2.72, 2.08, 3.12sec; 15/20, 300g vs 50, 50, 200g) and bioadhesive force (15/15, $6.8{\times}10^2\;dyne/cm^2$ vs 3.2, 6.0, $6.0{\times}10^2\;dyne/cm^2$; 15/20, $97.3{\times}10^2\;dyne/cm^2$ vs 11.1, 89.5, $92.0{\times}10^2\;dyne/cm^2$) decreased. Furthermore, the binding force of poloxamer gel became strong due to the hydrogen-bonding capacities of glycerin and the cross-liking bonding of sodium salt. Then, the gelation temperature (15/15, 35.0, $32.1^{\circ}C$; 15/20, 26.0, $21.0^{\circ}C$) decreased, and gel strength (15/15, 6.51 see, 300g; 15/20, 500, 650g) and bioadhesive force (15/15, 7.2, $81.6{\times}10^2\;dyne/cm^2$; 15/20, 112.3, $309.2{\times}10^2\;dyne/cm^2$) increased. The effect of pH on the physicochemical properties of poloxamer gel was dependent on the ingredients with which the buffer solutions were prepared. Poloxamer gels prepared with pH 1.2 and 4.0 buffer solutions had the increasing gelation temperature (15/15, 37.5, $38.1^{\circ}C$; 15/20, 33.1, $34.0^{\circ}C$) and the decreasing gel strength (15/15, 2.98, 3.81sec; 15/20, 200, 200g) and bioadhesive force (15/15, $7.0{\times}10^2dyne/cm^2$; 15/20, $74.0{\sim}88.1{\times}10^2dyne/cm^2$) owing to HCl. Poloxamer gel prepared with pH 6.8 buffer solutions had the decreasing gelation temperature (15/15, $27.2^{\circ}C$; 15/20, $22.3^{\circ}C$) and the increasing gel strength (15/15, 400g; 15/20, 550g) and bioadhesive force (15/15, $207.0{\times}10^2dyne/cm^2$; 15/20, $215.0{\times}10^2dyne/cm^2$) due to the cross-linking bonding of $NaH_2PO_4\;and\;K_2HPO_4$.

  • PDF

The Effects of Isopropyl 2-(1,3-dithioetane-2-ylidene)-2-[N-(4-methyl-thiazol-2-yl)carbamoyl]acetate (YH439) on Potentiated Carbon Tetrachloride Hepatotoxicity (상승적 화학적 간독성에 미치는 YH439의 영향)

  • Kim, Sang-Geon;Cho, Joo-Youn
    • The Korean Journal of Pharmacology
    • /
    • v.32 no.3
    • /
    • pp.407-416
    • /
    • 1996
  • The reactive intermediates formed during the metabolism of therapeutic agents, toxicants and carcinogens by cytochromes P450 are frequently capable of covalently binding to tissue macromolecules and causing tissue damage. It has been shown that YH439, a congener of malotilate, is effective in suppressing hepatic P450 2E1 expression. The present study was designed to further establish the mechanistic basis of YH439 protection against toxicant by assessing its effects against chemical-mediated potentiated hepatotoxicity. Retinoyl palmitate (Vit-A) pretreatment of rats for 7 days substantially enhanced carbon tetrachloride hepatotoxicity, as supported by an ${\sim}5-fold$ increase in serum alanine aminotransferase (ALT) activity, as compared to $CCl_4$ treatment alone. The elevation of ALT activity due to Vit-A was completely blocked by the treatment of $GdCl_3$ a selective inhibitor of Kupffer cell activity. Concomitant pretreatment of rats with both YH439 and Vit-A resulted in a 94% decrease in Vit-A-potentiated $CCl_4$ hepatotoxicity. YH439 was also effective against propyl sulfide-potentiated $CCl_4-induced$ hepatotoxicity. Whereas propyl sulfide (50 mg/kg, 7d) enhanced $CCl_4-induced$ hepatotoxicity by >5-fold, relative to $CCl_4$ treatment alone, concomitant treatment of animals with both propyl sulfide and YH439 at the doses of 100 and 200 mg/kg prevented propyl sulfide-potentiated $CCl_4$ hepatotoxicity by 35% and 90%, respectively. Allyl sulfide, a suppressant of hepatic P450 2E1 expression, completely blocked the propyl sulfide-enhanced hepatotoxicity, indicating that propyl sulfide potentiation of $CCl_4$ hepatotoxicity was highly associated with the expression of P450 2E1 and that YH439 blocked the propyl sulfide-enhanced hepatotoxicity through modulation of P450 2E1 levels. Propyl sulfide- and $CCl_4-induced$ stimulation of lipid peroxidation was also suppressed by YH439 in a dose-related manner, as supported by decreases in malonedialdehyde production. The role of P450 2E1 induction in the potentiation of $CCl_4$ toxicity and the effects of YH439 were further evaluated using pyridine as a P450 2E1 inducer. Pyridine pretreatment substantially enhanced the $CCl_4$ hepatotoicity by 23-fold, relative to $CCl_4$ alone. YH439, however, failed to reduce the pyridine-potentiated toxicity, suggesting that the other form(s) of cytochroms P450 inducible by pyridine, but not suppressible by YH439 treatment, may play a role in potentiating $CCl_4-induced$ hepatotoxicity. YH439 was capable of blocking cadmium chloride-induced liver toxicity in mice. These results demonstrated that YH439 efficiently blocks Vit-A-enhanced hepatotoxiciy through Kupffer cell inactivation and that the suppression of P450 2E1 expression by YH439 is highly associated with blocking of propyl sulfide-mediated hepatotoxicity.

  • PDF