• Title/Summary/Keyword: chitosan solution

Search Result 322, Processing Time 0.031 seconds

Effects of Carboxymethyl Chitosan on Yield and Whey Protein Loss in Cottage Cheese

  • Kim, Kyung-Tae;Kang, Ok-Ju
    • Preventive Nutrition and Food Science
    • /
    • v.10 no.3
    • /
    • pp.231-238
    • /
    • 2005
  • A standard $1\%$ w/v solution of CM-chitosan made from squid pen was added to milk at levels of $0.5\sim3\%$ (v/v) to improve the yield and rheological properties of cottage cheese by whey protein retention. Cheese curd did not form at levels higher than $3\%$ (v/v) CM-chitosan standard solution. Yield and total protein of cottage cheese increased up to $2\%\;by\;11\;to\;42\%\;and\;17\;to\;38\%$ respectively, compared to control cheese. Whey protein losses were decreased by 11 to $42\%$ and thus accounted for all of the increase in yield. Anomalous results were obtained at the $0.8\%$ level, which neither improved yield or whey protein retention nor stabilized rheological parameters, and at the $0.5\%$ level, which improved yield and total protein without increasing whey protein retention. Elasticity and cohesiveness of CM-chitosan-containing cheese were generally improved and stabilized during storage. Monitoring of cheese chromaticity values for four weeks revealed a delay in the onset of yellowing in cheeses with CM-chitosan compared to the controls, while the concentration of added CM-chitosan had little influence on cheese chromaticity. The addition of CM-chitosan solution could be applied directly to industrial scale cottage cheese-making without the need for any modification of the production process.

Antimicrobial Finish of Nonwoven Fabric by Treatment with Chitosan (키토산을 이용한 부직포의 항미생물가공)

  • Younsook Shin;Kyunghye Min
    • Textile Coloration and Finishing
    • /
    • v.10 no.3
    • /
    • pp.50-56
    • /
    • 1998
  • Nonwoven fabric was treated with chitosan solution to impart antimicrobial activities by pad-dry method. Antimicrobial activity was measured by Shake Flask Method. Two chitosans of different molecular weight(Mw) with similar degree of deacetylation(DDA) were used : ca. 1,800(chitosan oligomer : DDA 84%) and 180,000(DDA 86%). Chitosan oligomer displayed high antimicrobial activity against P. vulgaris at 0.01%, S. aureus and E. coli at 0.05% treatment concentration, shelving above 90% of reduction rate. Chitosan of Mw 180,000 was effective against S. aureus, E. coil and P. vulgaris at 0.05% treatment concentration, showing almost 100% reduction rate. While chitosan of Mw 180,000 shelved reduction rate above 75% against K. pneumoniae and P. aeruginosa at 0.5% treatment concentration, chitosan oligomer was not effective against them. Fabrics become stiffer and less air permeable as treatment concentration increases. Liquid strike-through time of the sample treated with 0.5% chitosan oligomer solution (3.0 sec) was comparable with a hydrophilic finished sample commercially available(2.6 sec).

  • PDF

Effects of Foliar Treatment of Underground Water, Chitosan Solution, and Wood Vinegar Solution on Residual Procymidone Removal in Altari Radish (지하수, 키토산 및 목초액의 엽면살포에 의한 알타리무 체내의 잔류 Procymidone 제거효과)

  • Jeong, Soon-Jae;Cho, Mi-Yong;Seok, Woon-Young;Oh, Ju-Sung
    • Korean Journal of Organic Agriculture
    • /
    • v.19 no.1
    • /
    • pp.121-134
    • /
    • 2011
  • For this study, Smilex powder, a pesticide, was sprayed on the Altari radish, and then underground water, Chitosan solution (${\times}$500), and wood vinegar solution (${\times}$1000) were evenly sprayed on the Altari radish respectively. Samples of Altari radishs for residual pesticide analysis were taken two hours, 1 day, 7 days, and 15 days after treatments, and the detectable concentration and degradability of procymidone, the pesticide residue, were measured. The results obtained are as follows: 1. When detectable concentration of procymidone within the altari radish was measured, treatment plots sprayed with underground water, Chitosan solution (${\times}$500), and wood vinegar solution (${\times}$1000) were found to show lower detectable concentration than the non-treatment plot which was sprayed with pesticide only. Especially, the treatment plots sprayed with Chitosan solution (${\times}$500), and with wood vinegar solution (${\times}$1,000) showed lower values than the average. 2. When the degradability of procymidone within the Altari radish was measured, the plot treated with Chitosan solution (${\times}$500) and the plot treated with wood vinegar solution (${\times}$1,000) were found to have relatively higher degradability of procymidone. There were not much differences among testing materials in the degradability of residual pesticides. However, the plot treated with Chitosan solution (${\times}$500) showed higher degradability. In terms of average degradability with time, degradability increased sharply 7 days after the foliar application of testing materials. 3. When the daily far-sighted view survey was conducted in order to find out growth disorder and damage on the Altari radish plants by the treatment of un-derground water, Chitosan solution (${\times}$500), and wood vinegar solution (${\times}$1,000), no symptomatic physiological disorders was observed on all the plants tested during the whole growing season at the tested concentration level.

Analysis of the shelf life of chitosan stored in different types of packaging, using colorimetry and dentin microhardness

  • da Cruz-Filho, Antonio Miranda;de Vito, Angelo Rafael;Souza-Flamini, Luis Eduardo;da Costa Guedes, Debora Fernandes;Saquy, Paulo Cesar;Silva, Ricardo Gariba;Pecora, Jesus Djalma
    • Restorative Dentistry and Endodontics
    • /
    • v.42 no.2
    • /
    • pp.87-94
    • /
    • 2017
  • Objectives: Chitosan has been widely investigated and used. However, the literature does not refer to the shelf life of this solution. This study evaluated, through the colorimetric titration technique and an analysis of dentin micro-hardness, the shelf life of 0.2% chitosan solution. Materials and Methods: Thirty human canines were sectioned, and specimens were obtained from the second and third slices, from cemento-enamel junction to the apex. A 0.2% chitosan solution was prepared and distributed in 3 identical glass bottles (v1, v2, and v3) and 3 plastic bottles (p1, p2, and p3). At 0, 7, 15, 30, 45, 60, 90, 120, 150, and 180 days, the specimens were immersed in each solution for 5 minutes (n = 3 each). The chelating effect of the solution was assessed by micro-hardness and colorimetric analysis of the dentin specimens. 17% EDTA and distilled water were used as controls. Data were analyzed statistically by two-way and Tukey-Kramer multiple comparison (${\alpha}=0.05$). Results: There was no statistically significant difference among the solutions with respect to the study time (p = 0.113) and micro-hardness/time interaction (p = 0.329). Chitosan solutions and EDTA reduced the micro-hardness in a similar manner and differed significantly from the control group (p < 0.001). Chitosan solutions chelated calcium ions throughout the entire experiment. Conclusions: Regardless of the storage form, chitosan demonstrates a chelating property for a minimum period of 6 months.

Physical Properties of Chitosan Film made from Crab Shell (꽃게 껍질에서 분리제조한 키틴산 필름의 물성에 관한 연구)

  • Cho, Jeong-Suk;Han, Jeong-Jun;Lee, Cherl-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.24 no.6
    • /
    • pp.574-580
    • /
    • 1992
  • Chitin was isolated from the residue of enzymatically hydrolyzed crab, Portunus trituberculatus, and further deacetylated by alkaline boiling to make chitosan. The physical properties of chitosan solution and its film forming properties were examined. The functional characteristics of chitosan film were compared to those of cellophane, polyvinyl chloride (PVC) and polyethylene (PE) films. The proximate chemical composition of chitin obtained from crab residue was 6.95% nitrogen, 0.3% crude ash and 4.57% moisture and the product yield was 12.8% based on a dry material basis. The degree of deacetylation of chitosan was $79{\sim}92%$ and $70{\sim}86%$ as determined by IR spectroscopy, and $70{\sim}86%$ as determined by colloid titration method each respectively. The chitosan at 1% acetic acid solution showed distinct pseudoplastic flow behavior. The flow behavior index and consistency index were 0.8886, 0.2084 $MPa{\cdot}s^n$ for 0.4% solution and 0.8498, 0.6190 $MPa{\cdot}s^n$ for 0.8% solution, respectively. The chitosan film had the highest tensile strength $(888 kg/cm^2)$ and water permeability $(100\;g/m^2{\cdot}24\;hrs)$ among the tested films, but relatively low elongation property (49%). It showed the similar tear strength (90kg/cm) and light permeability (87.7%) to other films tested in spite of the relatively high haze value (12.5%). As the thickness of chitosan film increased from 0.025 to 0.050 mm, the tensile strength of film decreased distictively, and the degree of elongation, tear strength, and water permeability of film also decreased slightly. Whereas the light permeability of film did not change and the haziness of film slightly increased by the increase of film thickness.

  • PDF

Chitosan Stimulates Calcium Uptake and Enhances the Capability of Chinese Cabbage Plant to Resist Soft Rot Disease Caused by Pectobacterium carotovorum ssp. carotovorum

  • Jang, Eun-Jung;Gu, Eun-Hye;Hwang, Byoung-Ho;Lee, Chan;Kim, Jong-Kee
    • Horticultural Science & Technology
    • /
    • v.30 no.2
    • /
    • pp.137-143
    • /
    • 2012
  • Chinese cabbage plant was grown hydroponically for 4 weeks in order to examine the temporal relationship of calcium concentration of the nutrient solution with calcium content in the leaf tissue and susceptibility of the tissue to soft rot disease by $Pectobacterium$ $carotovorum$ ssp. $carotovorum$ (Pcc). Calcium concentration from 0.5 to 32.0 mM was maintained for 1 week using Hoagland & Arnon solution. The calcium content of the leaf was proportionally increased to the concentration of the nutrient in the solution (r = 0.912). In contrast, the severity of soft rot symptom in the young leaves was inversely related with the amount of calcium supplied to the nutrient solution (r = 0.899). Water-soluble chitosan, prepared by hollow fiber filtration (> 100 kDa) was applied into the nutrient solution from 0.0 to 5,000 ppm. The chitosan of 10 ppm was the most effective to promote calcium uptake of the leaf, showing 155% of the control. The same chitosan solution prohibited most soft rot development of the leaf by Pcc, exhibiting only 53% of the control. Among different molecular weight fractions, chitosan fraction obtained from 30-100 kDa molecular weight cut-off promoted calcium uptake the most up to 163% of the control, and reduced the development of soft rot disease recording merely 36% of the control of the leaf tissue. The results obtained in the present study suggest that large scale production of water-soluble chitosan with an optimum molecular weight and its commercial application to Chinese cabbage production will be important to improve yield and quality of the crop.

Coating Effects on Grass Seeds with Chitosan Solution (Chitosan 용액에 의한 목초 종자의 피복효과)

  • 이주삼;조익환;안종호
    • Korean Journal of Organic Agriculture
    • /
    • v.6 no.1
    • /
    • pp.51-61
    • /
    • 1997
  • This experiment was carried out to investigate the growth response of 3 grasses to seed coating with chitosan solution and the attempt was made to estimate adequate seed coating concentrations of chitosan solution in each grass for the growth to be stimulated. Three species used in this experiment were orchardgrass, tall fescue and reed canarygrass. Six different seed coating concentrations of chitosan solution were applied as 0%(control), 0.01%, 0.05%, 0.1% and 1.0%, respectively. the results were obtained as follows; 1. Dry weight of tiller(WT), leaf area(LA), dry weight of leaf(LW), dry weight of stem(SW), dry weight of shoot(SHW), biological yield(BY) and C/F ratio were significantly different between species. 2. Number of tillers per plant(NT), dry weight of tiller(WT), dry weight of leaf(LW), dry weight of root(RW), dry weight of shoot(SHW), biological yield(BY) and T/R ration were significantly different between seed coating concentrations of chitosan solution. 3. The adequate seed coating concentrations of chitosan solution for the growth stimulating effect were different between species. The highest values of yield components and dry weight of plant parts were obtained at 1% in orchardgrass and tall fescue, and 0.05% in reed canarygrass, respectively. 4. Growth stimulating effect of seed coating in each species were different. The highest values were obtained in leaf area(LA), dry weight of leaf(LW), dry weight of root(RW), dry weight of shoot(SHW) and dry weight of biological yield(BY) in orchardgrass. The values of dry weight of stem(SW) and C/F ration were highest in reed canarygrass. 5. An increase in number of tillers per plant(NT), dry weight of leaf(LW), dry weight of stem(SW) and dry weight of root(RW) according to seed coating was attributed to the increase in dry weight of shoot(SHW). Among the aboved increasing factors, the dry weight of leaf(LW) was a main factor for the increase in dry weight of shoot(SHW). 6. An increase in dry weight of leaf(LW), dry weight of stem(SW) and dry weight of root(RW) according to seed coating was attributed to the increase in biological yield(BY). Both the dry weight of leaf(LW) and dry weight of root(RW) were main factors for the increase in biological yield(BY).

  • PDF

A Study on the Handle of Cotton Fabric treated with Chitosan Polyurethane Mixed Solution by KES (I) (키토산-폴리우레탄 혼합용액(混合溶液)으로 처리(處理)된 면직물(綿織物)의 KES에 의한 태분석(態分析) (I))

  • Yoon, Se-Hee;Jeon, Dong-Won;Kim, Jong-Jun
    • Journal of Fashion Business
    • /
    • v.8 no.1
    • /
    • pp.141-155
    • /
    • 2004
  • Chitosan, the natural biodegradable polymer derived from chitin by de- acetylation, has been widely applied to the textile finishing processes for excellent anti-microbial characteristic and handle improvement of fabric. The purpose of this study is to investigate the change of handle when cotton fabric is treated with chitosan-polyurethane mixed solution. The viscosity values of chitosan solutions were 8cps and 50cps, and the wet-pick-up% was maintained at 90%. In case of mixing with water soluble polyurethane, the mixture ratio of chitosan and polyurethane was settled on the solid content ratio of 1:0, 1:0.5, 1:1, 1:2. Also the change of physical properties by neutralization in NaOH solution was studied. The results can be summarized up as follows : 1. Extensibility(EM) and tensile energy(WT) of cotton fabric treated with chitosan are decreased, but bending rigidity(B) is remarkably increased. With the addition of polyurethane, the decrease of EM and WT is weakened and the increase of B is weakened. The case of neutralization is similar to the case of polyurethane addition. 2. By treating fabric with chitosan, FUKURAMI(Fullness and softness) is decreased, but KOSHI(Stiffness), SHARI(Crispness), HARI(Anti-drape Stiff ness) are increased. With the addition of polyurethane, the decrease of FUKURAMI is diminished and the increase of KOSHI, SHARI, HARI are diminished. 3. As the viscosity of chitosan solution increased, the air permeability value increased. The addition of polyurethane decreased the air permeability.

Extension of Shelf-Life of Kimchi by Addition of Chitosan during Salting (소금절임시 키토산 첨가가 김치의 보존성에 미치는 효과)

  • 노홍균;박인경;김순동
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.24 no.6
    • /
    • pp.932-936
    • /
    • 1995
  • The effect of chitosan in a salting step on the shelf-life to kimchi was investigated. Kimchi, prepared by using Chinese cabbages soaked in 10% salt solutions containing 0, 5, 10, 20 or 30% of 0.5% chitosan solution, was examined for taste and texture by sensory and instrumental evaluation during fermentation at $10^{\circ}C$ for 20 days. Sensory tests of the control kimchi revealed a strong sour taste with poor crispness and overall taste after 10 days of fermentation. In comparison, the chitosan-supplemnted kimchi, especially that reated with 20 and 30% of a chitosan solution, revealed a sour taste only after 20 days of fermentation, while still maintaining good crispness and overall taste. Properties of hardness and gumminess of kimchi measured instrumentally were higher for the chitosan-added kimchi than for the control products. This increased with increasing volumes of chitosan solution throughout the fermentation periods. These results suggest that the shelf-life of kimchi can be extended approximately 10 days using Chinese cabbage soaked in 10% salt solutions containing 20 or 30% of a 0.5% chitosan solution.

  • PDF

Dyeing and Crosslinking of Chitosan Fibers with $\alpha$-Bromoacrylamide Reactive Dyes ($\alpha$-Bromoacrylamide계 반응염료에 의한 키토산 섬유의 염색 및 가교)

  • 박병기;박봉수;정용식;이근완
    • Textile Coloration and Finishing
    • /
    • v.14 no.3
    • /
    • pp.26-33
    • /
    • 2002
  • Dyeing properties and crosslinking effect of bifunctional reactive dyes on chitosan fiber were investigated to improve the stability of chitosan fiber against the mild acidic solution and the wet processing. Chitosan fibers were crosslinked with epichlorohydrin for comparing purpose, and dyed with C. I. Reactive Red 194, C. I. Reactive Blue 50, and the reactive dye having two $\alpha$-bromoacrylamide groups at various concentrations. The initial dyeing rates of reactive dyes are rapid and chitosan fibers absorb the relatively large amount of dyes. The chitosan fibers dyed with these dyes show the low degree of swelling and the low solubility in 1 % acetic acid solution and also represent the higher thermal stability The reactive dye with two $\alpha$-bromoacrylamide groups shows higher crosslinking effect than other dyes.