• Title/Summary/Keyword: chitosan powder

Search Result 60, Processing Time 0.027 seconds

Hand-related Physical Properties and Luster Properties of Chitosan treated Cotton and Nylon Fabrics dyed with Natural Dyestuffs

  • Jeon, Dong-Won;Kim, Jong-Jun;Lee, Jung-Min;Shin, Hye-Sun
    • Journal of Fashion Business
    • /
    • v.7 no.3
    • /
    • pp.36-44
    • /
    • 2003
  • Chitosan treatment of textile fabrics has been studied to improve fabric characteristics and functions. Natural dyestuffs have been more actively employed in environment-conscious finishing products. In this study, chitosan treated cotton and nylon fabrics were prepared for dyeing with a few natural dyestuffs. These were Caesalpina sappan, Gardenia jasminoides, and cochineal in the form of powder. Hand-related physical and mechanical properties and luster characteristics were examined using the KES-FB series instruments and a set of luster measuring equipment. The chitosan treatment seemed to be more effective in terms of increasing stiffness for cotton fabric. Since cotton fibers have more -OH groups in the molecules, they provide more linkage sites with the chitosan than the nylon 6 fibers do.

Molecular Weight Control of Chitosan Using Gamma Ray and Electron Beam Irradiation

  • Kim, Hyun Bin;Lee, Young Joo;Oh, Seung Hwan;Kang, Phil Hyun;Jeun, Joon Pyo
    • Journal of Radiation Industry
    • /
    • v.7 no.1
    • /
    • pp.51-54
    • /
    • 2013
  • Chitosan is a useful natural polymer material in many application fields such as biomaterials, water-treatment, agriculture, medication, and food science. However, the poor solubility limits its application. In this study, the effects of radiation on chitosan were investigated using gamma ray and electron beam irradiation. The chemical structure and molecular weight analysis show similar degradation effects of chitosan powder in both gamma ray and electron beam irradiation. However, the radiation irradiated chitosan in $H_2O$ has a lower molecular weight, since the hydroxyl radicals attack the glycosidic bonds. This effect is more clearly shown in the electron beam irradiation results.

A Method for Making Kimchi Containing Snow Crab in a COVID-19 Environment

  • CHOI, Eun-Mee;KWON, Lee-Seung
    • Journal of Wellbeing Management and Applied Psychology
    • /
    • v.5 no.1
    • /
    • pp.9-22
    • /
    • 2022
  • Purpose: The purpose of this study is to develop a kimchi recipe for immunity enhancement using snow crab, which has high food value in the era of COVID-19. Research design, data and methodology: The snow crab kimchi manufacturing method of this study includes the steps of preparing a kimchi seasoning containing snow crab seasoning and chitosan powder. Kimchi seasoning is made by adding 5 parts by weight of crab seasoning and 1 part by weight of chitosan powder to 100 parts by weight of the basic kimchi seasoning prepared by mixing radish, minced garlic, minced ginger, onion juice, anchovy sauce, red pepper powder and glutinous rice paste. Results: It was possible to develop new flavors, possibilities and characteristics of snow crab kimchi by extending the health and functional effects, taste, and preservation period without significantly changing the unique manufacturing method, taste and function of kimchi, including snow crab. Conclusions: Snow crab kimchi was excellent in taste and aroma while enhancing the health functions of the body, such as improving people's immunity. The developed snow crab kimchi manufacturing method can not only improve people's health, but also expand the choice of preference for kimchi taste and shelf life.

Effects of Adsorption Condition on Fat-binding Characteristics of Chitosan (흡착조건이 키토산의 지방질 흡착 특성에 미치는 영향)

  • LEE Keun-Tai;SONG Ho-Su;PARK Seong-Min;KANG Ok-Ju;CHEONG Hyo-Sook
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.37 no.5
    • /
    • pp.359-365
    • /
    • 2004
  • To study the lipid adsorption characteristic of chitosans with different molecular weights and the degrees of deacetylation, in vitro test and near-infrared (NIR) spectroscopic analysis have been performed for the measurement of lipid adsorption characteristics of chitosan. The degrees of deacetylation in chitosans were $70{\%},\;85{\%}\;and\;92{\%}$ at different deacetylation times (1 hr, 2 hrs, 3 hrs), respectively. The molecular weight of each chitosan was controlled by enzymatic hydrolysis, and then the molecular weight of the chitosan was 4 kDa. The bulk density, water holding capacity and fat binding capacity of each chitosan powder were $96.2-504.0{\%},\;374.4-1217.9{\%},\;and\;307.0-659.3{\%}$, respectively. The higher molecular weight of chitosan was exhibited the lower bulk density and the higher water and fat binding capacities. Bindinf capacities of chitosan powders to bile salts, cholesterol and linoleic acid were $41.2-63.3{\%},\;40.8-67.4{\%},\;42.6-72.6{\%}$, respectively. In NIR spectrum of lipid adsorbed chitosan the occurrence static eletronical binding between chitosan and lipid was identified by NIR spectrum peak induced from combination of carboxylic group in lipid and amino group in chitosan. In conclusion, the higher degree of deacetylation and molecular weight of chitosan showed the higher lipid binding capacity and the lipid adsorption of chitosan were occurred by combination of carboxylic group in lipids and amino group in chitosan.

Study on the Manufacturing of Chitosan Using Krill(Euphausia superba Dana) and Quality Characteristics (크릴을 이용한 키토산 제조 및 품질 특성)

  • Do, Jeong-Ryong;Park, In-Sung;Rhee, Seong-Kap;Kim, Dong-Soo
    • Applied Biological Chemistry
    • /
    • v.43 no.4
    • /
    • pp.309-313
    • /
    • 2000
  • For the use of Antartic krill(Euphausia superba Dana) as food resource, general composition, extracting condition of chitin and quality characteristics of chitosan were investigated. General composition of frozen krill(Euphausia superba Dana) was consisted of moisture 79.0%, protein 13.1%, lipid 4.0%, VBN 7.7mg%, ash 2.7%, others 1.2% and that of dried krill powder was moisture 5.6%, protein 56.1%, lipid 18.8%, ash 11.4%, others 8.1%. The condition of chitin extraction from krill powder was treated with 1N NaOH at $40^{\circ}C$ for removing protein, 1N HCl for excepting mineral substances and methanol for decoloring. The yield of chitin by new procedure developed was 3.7%. The composition of extracted chitin contents was moisture 7.1%, ash 0.4%, protein 3.5%, lipid 3.1%. The results of degree of deacetylation in chitosan at 50% NaOH, $121^{\circ}C$, for 2 hrs was showed 82%. At the same alkali concentration and reaction concentration, a longer reaction time gave a decreased degree of deacetylation. The apparant viscosity was 0.09241 Pa in 1% chitosan from krill and 0.13826 Pa in standard chitosan.

  • PDF

Characterization of Endochitosanases-Producing Bacillus cereus P16

  • Jo, Yu-Young;Jo, Kyu-Jong;Jin, Yu-Lan;Jung, Woo-Jin;Kuk, Ju-Hee;Kim, Kil-Yong;Kim, Tae-Hwan;Park, Ro-Dong
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.6
    • /
    • pp.960-968
    • /
    • 2003
  • A bacterial isolate showing a strong endochitosanase activity was isolated from soil and then characterized. The isolate was identified and designated as Bacillus cereus P16, based on morphological and biochemical properties, assimilation tests, cellular fatty acids pattern, along with 16S rRNA gene sequence. The optimized medium for producing extracellular chitosanase in a batch culture contained 1% tryptone, 0.5% chitosan, and 1% NaCl (pH 7.0). Powder chitosan and tryptone served the best as carbon and nitrogen sources, respectively, for the chitosanase production. Chitosanase activity was the highest when culture was completed at $37^{\circ}C$ among various temperatures ($20-42^{\circ}C$) tested in a shaking incubator (200 rpm). The levels of chitosanase activity in the culture fluid were 2.0 U/ml and 3.8 U/ml, respectively, when incubated in a flask for 60 h and in a jar fermenter for 24 h. The culture supernatant showed a strong liquefying activity on the soluble chitosan. The viscosity of 1% chitosan solution, that was incubated with the culture supernatant, was rapidly decreased, suggesting the secretion of endochitosanolytic enzymes by P16. The culture fluid revealed six endo-type chitosanase isozymes, two major (38 and 45 kD), and four minor (54, 65, 82, and 96 kD) forms by staining profile. The crude enzymes were very stable, and full activity was maintained for 4 weeks at $4^{\circ}C\;or\;-20^{\circ}C$ in the culture supernatant, suggesting a highly desirable stability rate for making an industrial application of the crude enzymes. The supernatant also cleaved the insoluble chitosan powder, but the hydrolysis rate was much lower. The enzymic degradation products of chitosan contained $(GlcN)_n$ (n=2-8). The concentration of chitosan in the reaction mixture of the crude enzyme affected the chitooligosaccharides composition of the hydrolysis products. When the higher concentration of chitosan was used, the higher degree of polymerized chitooligosaccharides were produced. By comparison with other commercial chitosanase preparations, P16 was indeed found to be a valuable enzyme source for industrial production of chitooligosaccharides from chitosan.

Preparation of LiFe PO4 Using Chitosan and its Cathodic Properties for Rechargeable Li-ion Batteries

  • Hong, Kyong-Soo;Yu, Seong-Mi;Ha, Myoung-Gyu;Ahn, Chang-Won;Hong, Tae-Eun;Jin, Jong-Sung;Kim, Hyun-Gyu;Jeong, Euh-Duck;Kim, Yang-Soo;Kim, Hae-Jin;Doh, Chil-Hoon;Yang, Ho-Soon;Jung, Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.8
    • /
    • pp.1719-1723
    • /
    • 2009
  • The LiFeP$O_4$ powder was synthesized by using the solid state reaction method with Fe($C_2O_4){\cdot}2H_2O,\;(NH_4)_2HPO_4,\;Li_2CO_3$, and chitosan as a carbon precursor material for a cathode of a lithium-ion battery. The chitosan added LiFePO4 powder was calcined at 350 ${^{\circ}C}$ for 5 hours and then 800 ${^{\circ}C}$ for 12 hours for the calcination. Then we calcined again at 800 ${^{\circ}C}$ for 12 hours. We characterized the synthesized compounds via the crystallinity, the valence states of iron ions, and their shapes using TGA, XRD, SEM, TEM, and XPS. We found that the synthesized powders were carbon-coated using TEM images and the iron ion is substituted from 3+ to 2+ through XPS measurements. We observed voltage characteristics and initial charge-discharge characteristics according to the C rate in LiFeP$O_4$ batteries. The obtained initial specific capacity of the chitosan added LiFeP$O_4$ powder is 110 mAh/g, which is much larger than that of LiFeP$O_4$ only powder.

Effect of Chitosan-Soybean Curd on Serum Lipid Metabolism in Rats Fed High-Fat Diet (키토산 두부가 고지질 식이를 급여한 흰쥐의 혈청 지질대사에 미치는 영향)

  • 노홍균;백경연;김석중
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.31 no.6
    • /
    • pp.1078-1083
    • /
    • 2002
  • Effects of chitosan-soybean curd (prepared using chitosan as a coagulant), commercial soybean curd and chitosan powder on serum lipid metabolism were investigated with rats fed high-fat diet for 6 weeks. Food intake of experimental groups fed high-fat (HF), chitosan-soybean curd (CSC), soybean curd (SC), or chitosan powder (CP)diet was lower compared to t]tat of normal group. Body weight gain was lower in rats fed the CSC, SC and CP diets than in rats fed the HF diet. There was no significant difference in total cholesterol concentration among all groups, but HDL-cholesterol concentration was higher and LDL-cholesterol concentration was lower in rats fed the CSC, SC, CP diets than in rats fed the HF diet. Total lipid level was lower in rats fed the SC and CP diets than in rats fed the HF diet. Increment of triglyceride level and decrement of phospholipid level in rats fed the HF diet were recovered significantly by the CSC, SC and Cf diet. Our results indicate that chitosan-soybean curd prepared under the commercial processing condition may provide the beneficial effect on lipid metabolism even though its effect didn't show any significant difference compared to that of commercial soybean curd under the present experimental conditions.

Antibacterial Effect on Enterococcus Faecalis and Physical Properties of Chitosan Added Calcium Hydroxide Canal Filling Material (키토산 첨가 수산화칼슘 근관 충전재의 Enterococcus Faecalis에 대한 항균 효과 및 물리적 성질)

  • Song, Sol;Kim, Yu-Jin;Lee, Jung-Hwan;Lee, Joonhaeng;Shin, Jisun;Kim, Jongbin
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.48 no.2
    • /
    • pp.198-208
    • /
    • 2021
  • The aim of this study was to evaluate the antibacterial effect on Enterococcus Faecalis and physical properties of chitosan added calcium hydroxide canal filling material. Low, medium, high molecular weights of chitosan powder were mixed with calcium hydroxide canal filling material. Also, for each molecular weight group, 1.0, 2.0, 5.0 wt% of chitosan powder were added. An overnight culture of E. faecalis was adjusted to 1 × 106 CFU/ml. For test of antibacterial effect, three different molecular weights of 2.0 wt% chitosan and three different concentrations of high molecular weight chitosan were mixed with calcium hydroxide canal filling material. The absorbance of plates was analyzed using spectrophotometer at 570 nm with a reference wavelength of 600 nm. Physical properties such as flow, film thickness and radiopacity were examined according to ISO 6876 : 2012. All molecular weight type of chitosan containing material showed inhibitory effect against E. faecalis growth compared to non-chitosan added calcium hydroxide canal filling material group (p < 0.05). High molecular weight chitosan containing material showed the most antibacterial effect. Also, the antibacterial effect decreased as the incorporated amount of chitosan decreased (p < 0.05). Every molecular weight group of material containing chitosan had a tendency for reduced flow and radiopacity, increased film thickness according to amount of chitosan. Low molecular weight of 1.0 wt% chitosan addition did not show any significant difference of physical properties compared to conventional calcium hydroxide canal filling material. In conclusion, for reinforcement of antibacterial effect against E. faecalis and for favorable physical properties, 2.0 wt% of chitosan adding is recommended. Considering its antibacterial effect of chitosan, further studies are required for clinical application of chitosan in endodontics and pediatric dentistry.

Effects of Supplemental Dietary Wasabi Extract, Chitosan and Pophyra on Growth and Body Composition of Juvenile Flounder, Paralichthys olivaceus (넙치 배합사료에 고추냉이 추출물, 키토산 및 김 분말 첨가 효과)

  • Seo, Joo-Young;Kim, Kyoung-Duck;Shin, Il-Shik;Choi, Kyoo-Duck;Lee, Sang-Min
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.42 no.3
    • /
    • pp.257-261
    • /
    • 2009
  • Two feeding trials were conducted to investigate the effects of several dietary additives on growth and feed utilization of juvenile flounder. In the first experiment, three replicate groups of juveniles (average weight 1.5 g) were fed diets with or without wasabi extract and chitosan for 7 weeks. Survival rate, weight gain, protein efficiency ratio, hepatosomatic index and condition factor were not affected by the different dietary additives (P>0.05). Feed efficiency of fish fed the wasabi extract diet was significantly higher than that of fish fed the control diet (P<0.05). Daily feed intake of fish fed the wasabi extract diet was significantly lower than that of fish fed the other diets (P<0.05). In the second experiment, three replicate groups of juveniles (average weight 1.4 g) were fed diets with or without Pophyra powder for 7 weeks. Survival rate and weight gain were not significantly affected by dietary Pophyra powder (P>0.05). Feed efficiency and protein efficiency ratio of fish fed the Pophyra diet were significantly lower than those of fish fed the control diet (P<0.05). The results of these experiments suggest that feed efficiency of juvenile flounder may be improved by dietary supplementation with wasabi extract.