• Title/Summary/Keyword: chitinase production

Search Result 94, Processing Time 0.029 seconds

Optimization of Culture Conditions for toe Production of Chitinase (Chitinase 생성을 위한 배did 조건 최적화)

  • 차진명;석근영;차월석
    • KSBB Journal
    • /
    • v.16 no.4
    • /
    • pp.365-369
    • /
    • 2001
  • Chitinase producing microorganism, Serratia marcescens KY, was isolated from seashore mud around Beobseongpo in Chunnam province by selective enrichment culture. As the colloidal chitin concentration increased, chitinase production was increased. But chitinase production with addition of other carbon sources (glucose, fructose, galactose, maltose, sucrose, starch) was decreased. The effect of nitrogen sources on the chitinase production with serratia marcescens KY was as fellows. The opitimum mineral concentration for chitinase production was K$_2$HPO$_4$ 0.2 g/L and MgSO$_4$ 0.20 ∼ 0.25 g/L, respectively. The effect of nitrogen sources on chitinase production by Serratia marcescens KY was increased as follows, tryptone > yeast extract > beef extract > asparagine.

  • PDF

Isolation of Microorganism Producing Chitinase for Chitooligosaccharides Production, Purification of Chitinase, and its Enzymatic Characteristics (Chitoologosaccharides 생산에 적합한 Chitinase를 분비하는 균주의 선별, Chitinase의 분리정제 및 반응특성)

  • 정의준;이용현
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.2
    • /
    • pp.187-196
    • /
    • 1995
  • In order to produce fuctional chitooligosaccharides, a strain excreting mainly endo-type chitinase suitable for chitooligosaccharides production was newly screened and identified as Aspergillus fumigatus JC-19. The chitinase excretion was repressed in nutrient rich medium but stimulated by colloidal chitin indicating that the chitinase is inducible type enzyme. Maximum secretion of the enzyme was observed at pH 7.0 and 37$\circ$C . The growth and chitinase production patterns of Aspergillus fumigatus JC-19 showed that the cell growth reached maximum after 4-5 days with final chitinase concentration of 0.46 unit per ml. Excreted chitinase was purified by ammonium sulfate precipitation, colloidal chitin adsorption, anion exchange chromatography, and gel filtration, respectively, and measured M.W of 50 KDa. The enzyme reaction carried out both by crude and purified chitinase showed that the purified chitinase accumulated more chitooligosaccharides of 1-6 degree of polymerization than that of crude chitinase.

  • PDF

Optimal Conditions for Chitinase Production by Serratia marcescens

  • Cha, Jin-Myeong;Cheong, Kyung-Hoon;Cha, Wol-Suk;Choi, Du-Bok;Roh, Sung-Hee;Kim, Sun-Il
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.4
    • /
    • pp.297-302
    • /
    • 2004
  • A chitinase-producing bacterium was isolated from seashore mud around Beobseongpo in Chunmam province through the use of a selective enrichment culture. The best chitinase producing strain was isolated and identified as Serratia marcescens KY from its characteristics. For effective production of chitinase, optimum pH, temperature, and agitation speed were investigated in flask cultures. The optimum pH using Serratia marcescens KY was between pH 6 and 7 and the chitinase produced was 37.9 unit/mL. On the other hand, the optimal pH of the Serratia marcescens ATCC 27117 was 7.5, and the produced amount of chitinase was 35.2 unit/mL. The optimal temperature for chitinase production for Serratia marcescens KY and Serratia marcescens ATCC 27117 was $30^{\circ}$. The cell growth pattern at different temperature was almost identical to the chitinase production. To investigate the optimal shaking speed under optimal culture, speeds were varied in the range of 0∼300 rpm. The maximum production of chitinase was carried at 200 rpm although the cell growth was the highest at 150 rpm. It indicates that oxygen adjustment is required for the maximum chitinase production. Using optimal conditions, batch cultures for comparing Serratia marcescens KY and Serratia marcescens ATCC 27117 were carried out in a 5 L fermentor. The oxygen consumption was increased with the increase of culture. Especially, at 120 h of culture Serratia marcescens KY and Serratia marcescens ATCC 27117 produced 38.3 unit/mL, and 33.5 unit/mL, respectively.

Statistical Optimization of Chitinase Production by Pantoea dispersa to Enhance Degradation of Crustacean Chitin Waste

  • GOHEL;VIPUL;DERICK JIWAN;PRANAV VYAS;H. S. CHHATPAR
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.197-201
    • /
    • 2005
  • A novel chitinase-producing bacterial strain of Pantoea dispersa was isolated from the sea near Bhavnagar, India for efficient disposal of chitinous waste from the seafood processing industry. The medium components were optimized by using a cubic model in the central composite design for increasing chitinase production. The optimal concentrations for higher production of chitinase were (g l-1) chitin, 10.0; urea, 0.35; MgSO4 7H2O, 0.08, and CaCl2, 0.15. Here, peptone (0.05 g l-1) was used as a constant variant in all trials. Using a statistical optimization method, the chitinase production was found to increase from 108 to 486.4 units ml-1. Chitin was prepared from the crustacean waste, and Fourier Transform Infrared (FTIR) Spectroscopy was used to characterize the isolated chitin. Chitinous waste degradation was studied in terms of chitinase production.

Mass Production of Aphicidal Beauveria bassiana SFB-205 Supernatant with the Parameter of Chitinase

  • Kim, Jae-Su;Je, Yeon-Ho;Yu, Yong-Man
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.6
    • /
    • pp.604-612
    • /
    • 2011
  • Beauveria bassiana SFB-205 supernatant can effectively control cotton aphid populations, which is closely associated with its chitinase activity. The present work extends to optimizing a culture medium to produce more efficacious supernatant in flask conditions, followed by scale-up in 7 L, 300 L and 1.2 KL fermentors with the parameter of chitinase. In flask conditions, a combination of soluble starch and yeast extract produced the greatest amount of chitinase (5.1 units/ml) and its supernatant had the highest aphicidal activity. An optimal quantitative combination of the two substrates, estimated by a response surface method, enabled the supernatant to have 15.7 units/ml of chitinase activity and 3.7 ml/l of median lethal concentration ($LC_{50}$) of toxicity against cotton aphid adults in laboratory conditions. In the scale-up conditions, overall supernatant had 25-28 units/ml of chitinase activity. Decrease in pH and limitation of dissolved oxygen (DO) during cultures were significantly related to the yield of chitinase. These results suggest that the substrate-dependent chitinase production can be background information for optimizing a culture medium, and pH and DO are critical factors in maximizing the production in scale-up conditions.

내열성 Chitinase 생산균주의 분리 및 효소생산 특성

  • Hong, Bum-Shik;Yoon, Ho-Geun;Shin, Dong-Hoon;Cho, Hong-Yon
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.5
    • /
    • pp.560-566
    • /
    • 1996
  • A strain capable of producing thermostable chitinase suitable for chitooligosaccharide production was isolated from high temperature environment and identified as Bacillus licheniformis. The chitinase from Bacillus licheniformis KFB-Cl4 was only induced by addition of colloidal thitin into the basal medium as carbon source, showing the decrease of the chitinase production by supplernental addition of other carbon sources into the medium containing 1.0% colloidal chitin. Among organic and inorganic nitrogen sources, yeast extract was the most effective for the increase of total activity and specific activity, and had high affinity for the enzyme production. The optimum temperature of cell growth and thermostable chitinase production was 55$\circ$C. The optimum culture medium was composed of 1.2% colloidal chitin, 0.15% K$_{2}$HPO$_{4}$, 0.05% KH$_{2}$PO$_{4}$, 0.01% MgSO$_{4}$-7H$_{2}$O, 0.1% yeast extract (pH 6.5). Bacillus licheniformis KFB-C14 produced the thermostable chitinase of 3.89 units per ml culture fluid and 7.4 units per mg protein under rotary shaking at 150 rpm for 40 hr.

  • PDF

Isolation and Antifungal Activity of the Chitinase Producing Bacterium Serratia sp. 3095 as Antagonistic Bacterium against Fusarium sp. (Chitinase를 생산하는 길항미생물 Serratia sp. 3095의 선발과 Fusarium 속에 대한 항진균성)

  • Lee, Eun-Tag;Kim, Sang-Dal
    • Applied Biological Chemistry
    • /
    • v.42 no.3
    • /
    • pp.181-187
    • /
    • 1999
  • For the selection of an effective antagonistic biocontrol agent, we have isolated an antagonistic bacterium which produced extracellular chitinase, from a local soil of Kyongju, Korea. The selected strain was identified as Serratia proteamaculans 3095. The chitinase produced from Serratia sp. 3095 showed antifungal activity which can attack the hypha surface of Fusarium oxysporum and F. solani. The carbon and nitrogen sources for chitinase production were 0.15% colloidal chitin and 0.1% ammonium sulfate, respectively. Glucose in the chitinase production medium might inhibit the production of chitinase by feed back repression. The antagonistic Serratia sp. 3095 also showed a powerful biocontrol activity against F. oxysporum through in vitro test and in vivo pot test.

  • PDF

Optimal Production of N-acetyl-$\beta$-D-glucosamine Using Chitinolytic Enzyme (Chitinolytic Enzyme을 이용한 N-acetyl-$\beta$-D-glucosamine의 최적생산)

  • 이천우;이은영장상목김광
    • KSBB Journal
    • /
    • v.11 no.6
    • /
    • pp.696-703
    • /
    • 1996
  • The bacterium Serratia marcescens QM Bl466 produces selectively large amount of chitinolytic enzymes(about 1mg/L medium). Enzymatic hydrolysis of chitin to N-acelyl-${\beta}$-D-glucosamine(NAG) is performed by a system consisting of two hydrolases : chitinase and chilobiase. Objectives of this study included optimization of a microbial host by using chitin particles for chitinase/chitobiase production and secretion and also development of batch fermentation system for high cell density cultivalion of S. marcescens QM B1466. Also, the influence of chitin source and carboxymethyl(CM) chitin on chitinase/chitobiase production and NAG production was investigated. When carboxymethyl chitin was substituted for colloidal and practical grade chitin, the chitinase activity was increased about 7∼10U/mL. In this case, the ratio of chitinase/chitobiase was 30.03U/3.44U(9:1). The highest amounts of NAG(3.0g/L) was obtained.

  • PDF

Production and Characterization of Antifungal Chitinase of Bacillus licheniformis Isolated from Yellow Loess (황토로부터 분리한 Bacillus licheniformis의 항진균 chitinase 생산과 효소 특성)

  • Han, Gui Hwan;Bong, Ki Moon;Kim, Jong Min;Kim, Pyoung Il;Kim, Si Wouk
    • KSBB Journal
    • /
    • v.29 no.3
    • /
    • pp.131-138
    • /
    • 2014
  • In this study, we isolated two novel chitinase producing bacterial strains from yellow loess samples collected from Jullanamdo province. The chitinase producing bacteria were isolated based on the zone size of clearance in the chitin agar plates. Both of them were gram positive, rod ($2{\sim}3{\times}0.3{\sim}0.4{\mu}m$), spore-forming, and motility positive. They were facultative anaerobic, catalase positive and hydrolyzed starch, gelatin, and casein. From the 16s rRNA gene sequence analysis, the isolates were labeled as Bacillus licheniformis KYLS-CU01 and B. licheniformis KYLS-CU02. The isolates showed higher extracellular chitinase activities than B. licheniformis ATCC 14580 as a control. The optimum temperature and pH for chitinase production were $40^{\circ}C$ and pH 7.0, respectively. Response Surface Methodology (RSM) was used to optimize the culture medium for efficient production of the chitinase. Under this optimal condition, 1.5 times higher chitinase activity of B. licheniformis KYLS-CU02 was obtained. Extracellular chitinases of the two isolates were purified through ammonium sulfate precipitation and anion-exchange DEAE-cellulose column chromatography. The specific activities of purified chitinase from B. licheniformis KYLS-CU01 and B. licheniformis KYLS-CU02 were 7.65 and 5.21 U/mg protein, respectively. The molecular weights of the two purified chitinases were 59 kDa. Further, the purified chitinase of B. licheniformis KYLS-CU01 showed high antifungal activity against Fusarium sp.. In conclusion, these two bacterial isolates can be used as a biopesticide to control pathogenic fungi.

Isolation of Chitin-utilizing Bacterium and Production of Its Extracellular Chitinase

  • Woo, Cheol-Joo;Yun, Un-Jung;Park, Heul-Doung
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.6
    • /
    • pp.439-444
    • /
    • 1996
  • A bacterial strain, designated as WY22, producing extracellular chitinase was isolated from the soil around the Youngduck area, after enrichment culture in a medium containing $1{\%}$ (w/v) wet colloidal chitin as a sole carbon source. The isolate was identified as a strain of Bacillus sp. based on its morphological and physiological characteristics. It was observed that Bacillus sp. WY22 could inhibit the growth of Fusarium oxysporum with hyphal extention-inhibition assay on potato dextrose agar plate supplemented with $1{\%}$ collidal chitin. Optimum culture conditions of Bacillus sp. WY22 were examined for chitinase production in a chitin medium. High level production of chitinase was observed not only in the chitin medium but in a medium supplemented with $1{\%}$ N-glucosamine or lactose instead of chitin. The optimum concentrations of colloidal chitin and yeast extract were 3.0 and $0.5{\%}$, and the optimum culture conditions for initial pH of medium and temperature were 7.0 and $30^{\circ}C$, respectively, for the production of chitinase.

  • PDF