• Title/Summary/Keyword: chiral styrene oxide

Search Result 19, Processing Time 0.026 seconds

Production of Chiral (S)-styrene Oxide by Rhodosporidium sp. SJ-4 which has an Epoxide Hydrolase Activity (에폭사이드 가수분해효소를 갖는 Rhodosporidium sp. SJ-4를 이용한 광학활성 (S)-styrene Oxide의 생산)

  • Yoo, Seung-Shick;Lee, Eun-Yeol;Kim, Hee-Sook;Kim, Jung-Sun;Oh, You-Kwan;Park, Sung-Hoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.10
    • /
    • pp.857-863
    • /
    • 2005
  • A yeast strain utilizing styrene epoxide as a sole carbon and energy source was isolated from soil samples for the production of enantiopure of styrene epoxide by kinetic resolution. The strain, identified as a Rhodosporidium toruloides SJ-4, expressed an epoxide hydrolase which preferentially converted (R)-styrene epoxide into the corresponding diol. A maximum activity of 135 U/L was observed when biomass (dry cell mass) reached 6.7 g/L at 21 h of batch culture. Under the partially optimized reaction conditions ($35^{\circ}C$ and pH 8.0), the optically pure (S)-styrene epoxide was obtained with the yield of 21% when the initial substrate concentration was 100 mM. The reaction was completed at 9 h.

Purification and Characterization of a Recombinant Caulobacter crescentus Epoxide Hydrolase

  • Hwang, Seung-Ha;Hyun, Hye-Jin;Lee, Byoung-Ju;Park, Young-Seub;Lee, Eun-Yeol;Choi, Cha-Yong
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.4
    • /
    • pp.282-287
    • /
    • 2006
  • A Caulobacter crescentus epoxide hydrolase(CCEH) from a recombinant Escherichia coli was purified to homogeneity using a three-step procedure. The CCEH protein was purified 7.3-fold with a 22.9% yield in overalll activity. The optimal reaction temperature and pH were determined to be $37^{\circ}C$ and pH 8.0, respectively. The addition of 10%(v/v) dimethylsulfoxide as a cosolvent improved the enantioselectivity of CCEH for a batch kinetic resolution of racemic indene oxide.

Assay of Epoxide Hydrolase Activity Based on PCR-linked in vitro Coupled Transcription and Translation System. (무세포 단백질합성 시스템 기반의 epoxide hydrolase 발현 및 활성 분석)

  • Lee, Ok-Kyung;Kim, Hee-Sook;Lee, Eun-Yeol
    • Journal of Life Science
    • /
    • v.15 no.5 s.72
    • /
    • pp.779-782
    • /
    • 2005
  • Cell-free expression is a powerful tool for rapid protein analysis, enabling an efficient identification of gene without cumbersome procedure of transformation and cell culture. Epoxide hydrolase (EH) gene of Rhodotorula glutinis was simply amplified by PCR, and the resultant gene was expressed in vitro using a coupled Transcription/translation system. The cell-free expressed EH protein mixture exhibited the enantioselective hydrolysis activity toward (R)-styrene oxide, representing that cell-free protein synthesis system can be used for the rapid expression of an enantioselective enzyme for an efficient identification of the chiral activity.

Cloning and Molecular Characterization of Epoxide Hydrolase from Aspergillus niger LK (Apergillus niger LK 유래의 Epoxide Hydrolase 클로닝 및 특성 분석)

  • 이은열;김희숙
    • KSBB Journal
    • /
    • v.16 no.6
    • /
    • pp.562-567
    • /
    • 2001
  • Aspergillus niger LK harboring the enantioselective epoxide hydrolase (EHase) activity was isolated, and enantioselectivity of EHase was tested for various racemic aromatic epoxides. The gene encoding epoxide hydrolase was cloned from cDNA library generated by reverse transcriptase-polymerase chain reaction of the isolated total mRNA. Sequence analysis showed that the cloned gene encodes 398 amino acids with a deduced molecular mass of 44.5 kDa. Database comparison of the amino acid sequence reveals that it is similar to fungal EHase, whereas the sequence identity with bacterial EHase is very low. Recombinant expression of the cloned EHase in Escherichia coli BL21 yielded an active EHases, which can offer a potential biocatalyst for the production of chiral epoxides.

  • PDF

Biocatalytic production of chiral epoxide: Epoxide hydrolase-catalyzed enantioselective resolution

  • Lee, Eun-Yeol
    • Proceedings of the Korean Society of Life Science Conference
    • /
    • 2001.11a
    • /
    • pp.21-28
    • /
    • 2001
  • A newly isolated Aspergillus niger possessing the novel epoxide hydrolase(EHase) activity was investigated for the enantioselective hydrolysis of racemic aromatic epoxides. The gene encoding EHase was cloned by RT-PCR, and molecular characteristics of the EHase gene were compared with other microbial EHases. The cloned gene encodes 398 amino acids with a deduced molecular mass of 44.5 kDa and pI of 4.83, and sequence homology with other microbial EHase was low. Functional recombinant EHase could be obtained by heterologous expressions in E. coli. Enantioselectivity of recombinant EHase was tested for valuable aromatic epoxide intermediates. Reaction conditions of EHase-catalyzed asymmetric resolution were optimized for the production of chiral styrene oxide.

  • PDF

Enantioselective Reduction of Racemic Three-Membered Heterocyclic Compounds. 3. Reaction of Epoxides with B-Isopinocampheyl-9-borabicycolo[3.3.1]nonane-Potassium Hydride and Potassium B-Isopinocampheyl-9 boratabicyclo[3.3.1]nonane Systems$^1$

  • Cha, Jin-Soon;Lee, Kwang-Woo;Yoon, Nung-Min
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.5
    • /
    • pp.421-423
    • /
    • 1987
  • The chiral B-isopinocampheyl-9-borabicyclo[3.3.1]nonane-potassium hydride (IPC-9-BBN-KH) and potassium B-isopinocampheyl-9-boratabicyclo[3.3.1]nonane (K IPC-9-BBNH) systems were applied to the enantioselective reduction of representative racemic epoxides, namely 1,2-epoxybutane, 1,2-epoxyoctane, 3,3-dimethyl-1,2-epoxybutane and styrene oxide. In the case of IPC-9-BBN-KH system, the optical yields are in the range of 8.3-37.4$\%$ ee. However, the system of K IPC-9-BBNH provides significantly lower optical yields, showing 7-22.5$\%$ ee. These results strongly suggest that the enantioselective coordination of chiral organoborane to the epoxy oxygen of racemic epoxides plays an important role in this resolution.

Enantioselective Epoxide Synthesis on the Chiral Salen Catalyst having a Transitional Metal Salt (전이금속염 함유 키랄 살렌 촉매에 의한 광학선택적 에폭사이드의 합성)

  • Guo, Xiao-Feng;Kawthekar, Rahul B.;Kim, Geon-Joong
    • Korean Chemical Engineering Research
    • /
    • v.46 no.4
    • /
    • pp.769-776
    • /
    • 2008
  • The stereoselective synthesis of chiral terminal epoxide is of immense interest due to their utility as versatile starting materials as well as chiral intermediates. In this study, new chiral Co(salen) complexes bearing cobalt(II) chloride, iron(III) chloride and zinc(II) nitrate have been synthesized and characterized. The mass and EXAFS spectra provided the direct evidence of formation of complex. Their catalytic activity and selectivity have been demonstrated for the asymmetric ring opening of terminal epoxides such as styrene oxide and phenylglycidylether by hydrolytic kinetic resolution technology and for the synthesis of glycidyl buthylate. The easily prepared complexes exhibited very high enantioselectivity for the asymmetric ring opening of epoxides with $H_2O$ nucleophile, providing enantiomerically enriched terminal epoxides (>99% ee). The newly synthesized chiral salen showed remakablely enhanced reactivity with substantially low loadings. The system described in this work is very efficient for the sinthesis of chiral epoxide and 1,2-diol intermediates.

Optimization of the Reaction Conditions for (R)-Phenyl-1,2-ethanediol Preparation by Recombinant Epoxide Hydrolase from Caulobacter crescentus (재조합 Caulobacter crescentus 에폭사이드 가수분해효소를 이용한 광학활성 Diol 제조 조건의 최적화)

  • Lee, Ok-Kyung;Kim, Hee-Sook
    • Microbiology and Biotechnology Letters
    • /
    • v.35 no.4
    • /
    • pp.285-291
    • /
    • 2007
  • Enantioconvergent hydrolysis process for the preparation of chiral diol from racemic epoxides by using the recombinant Caulobacter crescentus epoxide hydrolase (CcEH) in Escherichia coli BL21 (DE3) was optimized. For the optimization, the effects of detergent, temperature and product inhibition on the enantiopurity and the yield of diol were investigated. (R)-phenyl-1,2-ethanediol with 92% enantiomeric excess and 56% yield from 20 mM racemic styrene oxide was obtained by using the recombinant CcEH at the optimal condition of $10^{\circ}C$ and the addition of 2% (w/v) Tween 80. At 50 mM racemic styrene oxide was used as a substrate, (R)-phenyl-1,2-ethanediol was obtained with 87% enantiomeric excess and 77% yield. Racemic phenyl-1,2-ethanediol, (R)-phenyl-1,2-ethanediol and (S)-phenyl-1,2-ethanediol dramatically inhibited the hydrolytic activity of the recombinant CcEH. These results suggested that another EH with the regioselectivity on ${\beta}$-position of (R)-enantiomer and without feedback inhibition by products would be needed as the partner EH of C. crescentus EH.