• Title/Summary/Keyword: chiral intermediate

Search Result 33, Processing Time 0.018 seconds

Efficient (3R)-Acetoin Production from meso-2,3-Butanediol Using a New Whole-Cell Biocatalyst with Co-Expression of meso-2,3-Butanediol Dehydrogenase, NADH Oxidase, and Vitreoscilla Hemoglobin

  • Guo, Zewang;Zhao, Xihua;He, Yuanzhi;Yang, Tianxing;Gao, Huifang;Li, Ganxin;Chen, Feixue;Sun, Meijing;Lee, Jung-Kul;Zhang, Liaoyuan
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.1
    • /
    • pp.92-100
    • /
    • 2017
  • Acetoin (AC) is a volatile platform compound with various potential industrial applications. AC contains two stereoisomeric forms: (3S)-AC and (3R)-AC. Optically pure AC is an important potential intermediate and widely used as a precursor to synthesize novel optically active materials. In this study, chiral (3R)-AC production from meso-2,3-butanediol (meso-2,3-BD) was obtained using recombinant Escherichia coli cells co-expressing meso-2,3-butanediol dehydrogenase (meso-2,3-BDH), NADH oxidase (NOX), and hemoglobin protein (VHB) from Serratia sp. T241, Lactobacillus brevis, and Vitreoscilla, respectively. The new biocatalyst of E. coli/pET-mbdh-nox-vgb was developed and the bioconversion conditions were optimized. Under the optimal conditions, 86.74 g/l of (3R)-AC with the productivity of 3.61 g/l/h and the stereoisomeric purity of 97.89% was achieved from 93.73 g/l meso-2,3-BD using the whole-cell biocatalyst. The yield and productivity were new records for (3R)-AC production. The results exhibit the industrial potential for (3R)-AC production via whole-cell biocatalysis.

Characterization of Nitrile-hydrolyzing Enzymes Produced from Rhodococcus erythropolis (니트릴 분해효소 생산균인 Rhodococcus erythropolis의 발굴 및 효소 특성 연구)

  • Park Hyo-Jung;Park Ha-Joo;Uhm Ki-Nam;Kim Hyung-Kwoun
    • Microbiology and Biotechnology Letters
    • /
    • v.34 no.3
    • /
    • pp.204-210
    • /
    • 2006
  • Ethyl (S)-4-chloro-3-hydroxybutyrate is a useful intermediate for the synthesis of Atorvastatin, a chiral drug to hypercholesterolemia. In this research, two 4-chloro-3-hydroxybutyro-nitrile-degrading strains were isolated from soil sample. They were identified as Rhodococcus erythropolis strains by 16S rRNA analysis. The nitrile-degrading enzyme(s) were suggested to be nitrile hydratase and amidase rather than nitrilase from the result of thin layer chromatography analysis. The corresponding genes were obtained by PCR cloning method. The predicted protein sequences had identities more than 96% with nitrile hydratase ${\alpha}-subunit$, nitrile hydratase ${\beta}-subunit$, and amidase of R. erythropolis. The 4-chloro-3-hydroxybutyronitrile-hydrolyzing activities in both strains were increased dramatically by ${\varepsilon}-caprolactam$ which was known as good inducer for nitrile hydratase. Both intact cells and cell-free extract could hydrolyze the nitrile compound. So, the intact cell and the enzymes could be used as potential biocatalyst for the production of 4-chloro-3-hydroxybutyric acid.

Efficient Stereoselective Synthesis of (2S,3S,4S)-3,4-Dihydroxyglutamic Acid ((2S,3S,4S)-3,4-다이하이드록시글루타믹산의 효율적인 입체선택적 합성)

  • Jeon, Jongho;Shin, Nara;Lee, Jong Hyup;Kim, Young Gyu
    • Applied Chemistry for Engineering
    • /
    • v.25 no.4
    • /
    • pp.392-395
    • /
    • 2014
  • (2S,3S,4S)-3,4-Dihydroxyglutamic acid (DHGA), a biologically active ${\alpha},{\beta}$-dihydroxy-${\gamma}$-amino acid, was efficiently synthesized from a readily available D-serine derivative in 30% overall yield over 11 steps. The key stereoselective $OsO_4$-catalyzed dihydroxylation reaction controlled by an N-diphenylmethylene group on the amino group of ${\gamma}$-amino-${\alpha},{\beta}$-unsaturated (Z)-ester successfully introduced the diol moiety of the intermediate 5a in 86% with more than 10 : 1 diastereomeric ration. Then it was in turn successfully converted to the desired target compound, (2S,3S,4S)-3,4-DHGA, via simple oxidation and hydrolysis in a highly stereoselective manner and a higher yield than the previous syntheses. This result strongly supports that our synthetic methodology of stereoselective $OsO_4$-catalyzed dihydroxylation should be useful in stereoselctive synthesis of various bioactive compounds with an amino diol moiety.