• Title/Summary/Keyword: chiral compound

Search Result 39, Processing Time 0.026 seconds

Experimental and FEMLAB Simulation Study of Ibuprofen Racemate Separation in HPLC (Ibuprofen Racemate의 HPLC 분리실험과 FEMLAB 전산모사 연구)

  • Lee, Eun;Chang, Sang-Mork;Kim, Jong-Min;Kim, Woo-Shick;Kim, In-Ho
    • KSBB Journal
    • /
    • v.21 no.3
    • /
    • pp.224-229
    • /
    • 2006
  • FEMLAB is a powerful interactive environment for modeling, solving all kinds of scientific and engineering problems based on partial differential equations(PDEs). Separation process of chiral compound in HPLC columns was simulated by FEMLAB. To study change of elution profile with isotherm models, non-competitive and competitive Langmuir adsorption isotherm were adopted. Separated material was (R, S)-ibuprofen [(R, S)-2-(4-isobutyl phenyl) propionic acid], an anti-inflammatory agent, which retain the pharmacological activity in the (S)-(+)-enantiomer. Sample concentrations were changed from 0.5 mg/ml to 2.0 mg/ml at a flow rate of 1 ml/min and flow rate varied from 1 ml/min to 3 ml/min at an ibuprofen concentration of 2.0 mg/ml and $20{\mu}l$ of injection volume. Simulated results were well fitted with experimental data.

Cytotoxicity and Genotoxicity Study of CKD-712 in Mammalian Cell System

  • Kim, Eun-Young;Yun, Hye-Jung;Kim, Youn-Jung;Ryu, Jae-Chun
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2003.05a
    • /
    • pp.186-186
    • /
    • 2003
  • CKD-712, named S-YS49 is a chiral compound derived from higenamine (one component of Aconite spp.) derivatives. To compare the cytotoxicity of CKD-712 between in the absence and in the presence of S9 metabolic activation system, we performed trypan blue dye exclusion assay in Chinese hamster lung (CHL) cell. In CHL cells, the cytotoxicity (IC50) of CKD-712 was 92.9 $\mu\textrm{g}$/ml and 186.1 $\mu\textrm{g}$/ml in the absence and presence of S9 metabolic activation, respectively. And we also investigated the induction of DNA damages in mammalian cells. To perform the single cell gel electrophoresis, we determined optimum concentration in mouse lymphoma L5178Y cells using frypan blue dye exclusion assay Each IC20 of CKD-712 was determined the concentration of 23.4 $\mu\textrm{g}$/ml and 24.8 $\mu\textrm{g}$/ml in the absence and presence of S9 metabolic activation, respectively. In the comet assay, DNA damage was not observed at the concentration range from 23.4 $\mu\textrm{g}$/ml to 5.9 $\mu\textrm{g}$/ml in the absence of S9 metabolic activation system. In the presence of S9 metabolic activation system, DNA damage was not observed at the concentration range from 24.8 $\mu\textrm{g}$/ml to 6.2 $\mu\textrm{g}$/ml. From these results, it is assumed that CKD-712 may be metabolized to less cytotoxic metabolite(s).

  • PDF

Identification of urinary metabolite(s) of CKD-712 by gas chromatography/mass spectrometry in rats

  • Jeon, Hee-Kyung;Park, Hae-Yeon;Kim, Youn-Jung;Kwon, Oh-Seung;Ryu, Jae-Chun
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2003.05a
    • /
    • pp.188-188
    • /
    • 2003
  • Examination was made of the urinary metabolite(s) of CKD-712, which is a chiral compound, named S-YS49 derived from higenamine (one component of Aconite spp.) derivatives. First of all, to analyze the metabolite(s) of CKD-712, a simple and sensitive detection method for CKD-712 was developed by using gas chromatography-mass spectrometry GC/MS). Urine was collected from adult male Sprague-Dawley rats 250${\pm}$10g) in metabolic cage for 24hr after oral administration of 100 mg/kg of CKD-712. The recovery of CKD-712 after extraction and concentration with AD-2 resin column was above 90 % from rat urine. The detection limits of CKD-712 in urine was approximately 0.1 ng/mL. It has well been suggested that isoquinoline possessing catechol moiety such as CKD-712 should be subjected to the catechol-O-methyl kransferase activity in vivo. We detected three major peaks of presumed CKD-712 metabolites in the total ion chromatogram obtained from the rat urine sample after oral administration of CKD-712. From these results, it is assumed that the urinary metabolites are mono-methylation in the naphthyl moiety (metabolite I ), methylation at the C-6 or 7 hydroxy group in the isoquinoline moiety and hydroxylation at in the naphthyl moiety (metaboliteII), and methylation at the C-6 or 7 hydroxy group in the isoquinoline moiety (metaboliteIII).

  • PDF

Enantiospecific separation in biphasic Membrane Reactors

  • Giorno, Lidietta
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.15-18
    • /
    • 1998
  • Membrane reactors are systems which combine a chemical reactor with a membrane separation process allowing to carry out simultaneously conversion and product separation. The catalyst can be immobilized on the membrane or simply compartmentalized in a reaction space by the membrane. Membrane reactors are today investigated to produce optically pure isomers and/or resolve racemic mixture of enantiomers. The interest towards these systems is due to the increasing demand of enantiomerically pure compounds to be used in the pharmaceutical, food, and agrochemical industries. In fact, enantiomers can have different biological activities, which often influence the efficacy or toxicity of the compound. On the basis of current literature there are basically two schemes on the use of membrane technology to produce enantiomers. In one case, the membrane itseft is intrinsically enantioselective: the membrane is the chiral system which selectively separates the wanted isomer on the basis of its conformation. In the other, a kinetic resolution using an enantiospecific biocatalyst is combined with a membrane separation process; the membrane separates the product from the substrate on the basis of their relative chemical properties (i.e. solubility). This kind of configuration is widely used to carry out kinetic resolutions of low water soluble substrams in biphasic membrane reactors [Giomo, 1995, 1997; Lopez, 1997]. These are systems where enzyme-loaded membranes promote reactions between two separate phases thanks to the properties of enzymes, such as lipases, to catalyse reactions at the org ic/aqueous interface; the two phases are maintained in contact and separated at the membrane level by operating at appropriate transmembrane pressure. A schematic representation of biphasic membrane reactor is shown in figure 1, while an example of enantiospecific reaction and product separation carried out with these systems is reported in figure 2.

  • PDF

Stereoselective Synthesis of (2S,3R)-3-Hydroxyhomoserine Lactone via anti Selective Dihydroxylation of an OBO Group-Protected Vinyl Glycine Analog ((2S,3R)-3-하이드록시호모세린락톤의 입체선택적 합성 : 바이닐글라이신 OBO Ester 유도체의 입체선택적인 이중알콜화 반응)

  • Koh, Moo-hyun;Jeon, Jongho;Kim, Young Gyu
    • Applied Chemistry for Engineering
    • /
    • v.31 no.2
    • /
    • pp.187-192
    • /
    • 2020
  • (2S,3R)-3-hydroxyhomoserine lactone (HSL) has been used as a key intermediate for the synthesis of various biologically active compounds. In this study, we demonstrated an efficient synthesis of HSL via anti selective dihydroxylation of a protected vinyl glycine analog with an oxabicyclo[2.2.2]octyl orthoester (OBO) ester group. Because the acyclic conformation of the substrate was efficiently controlled by the bulky OBO ester group, a diastereoselectivity of > 10 : 1 was obtained in the dihydroxylation reaction without the use of a chiral reagent. By using this result, the target compound 1 can be obtained from commercially available N-Cbz-L-serine 2 in seven steps with an overall yeid of 34%. This result could be applied to the stereoselective synthesis of biologically active molecules containing a vicinal amino diol moiety.

Anti-proliferation, Cell Cycle Arrest, and Apoptosis Induced by Natural Liquiritigenin from Licorice Root in Oral Squamous Cell Carcinoma Cells (구강편평세포암종 세포에서 감초 유래 Liquiritigenin의 항증식, 세포주기 정지 및 세포사멸 유도)

  • Kwak, Ah-Won;Yoon, Goo;Chae, Jung-Il;Shim, Jung-Hyun
    • Journal of Life Science
    • /
    • v.29 no.3
    • /
    • pp.295-302
    • /
    • 2019
  • Liquiritigenin (LG) is a chiral flavonoid isolated from the roots of licorice. It exhibits multiple biological activities including anti-oxidant, anti-cancer, and anti-inflammatory effects. In particular though, the anti-cancer activity of LG in oral squamous cell carcinoma has yet to be elucidated, and LG-induced apoptosis in oral squamous cell carcinoma remains poorly understood. In the present study, we tested the role of LG in inducing apoptosis in oral squamous cell carcinoma cells. LG treatment of HN22 cells resulted in a dose-dependent inhibition of cell viability as detected by a 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide assay. The induction of apoptosis in terms of Annexin V/7-Aminoactinomycin D staining, sub-G1 population, and multi-caspase activity were assessed with a $Muse^{TM}$ Cell Analyzer. Flow cytometric analysis revealed that LG treatment resulted in G2/M arrest in cell cycle progression and downregulation of cyclin B1 and CDC2 expression in a concentration-dependent manner. It also resulted in significant upregulation of p27. In addition, LG was seen to trigger the generation of reactive oxygen species and induce CCAAT/enhancer-binding protein homologous protein and 78-kDa glucose-regulated protein in concentration-dependent upregulation. The LG treatment of HN22 cells led to a loss of mitochondrial membrane potential (${\Delta}{\Psi}m$); it also reduced the levels of anti-apoptotic protein and increased the expression of apoptotic protease activating factor-1, cleaved poly (ADP-ribose)polymerase and Bax. Overall, our results indicate that the pro-apoptotic effects of LG in HN22 cells depend on the activation of both intrinsic and extrinsic signaling pathways. Thus, our results suggest that LG constitutes a natural compound with a potential role as an anti-tumor agent in oral squamous cell carcinoma.

Efficient (3R)-Acetoin Production from meso-2,3-Butanediol Using a New Whole-Cell Biocatalyst with Co-Expression of meso-2,3-Butanediol Dehydrogenase, NADH Oxidase, and Vitreoscilla Hemoglobin

  • Guo, Zewang;Zhao, Xihua;He, Yuanzhi;Yang, Tianxing;Gao, Huifang;Li, Ganxin;Chen, Feixue;Sun, Meijing;Lee, Jung-Kul;Zhang, Liaoyuan
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.1
    • /
    • pp.92-100
    • /
    • 2017
  • Acetoin (AC) is a volatile platform compound with various potential industrial applications. AC contains two stereoisomeric forms: (3S)-AC and (3R)-AC. Optically pure AC is an important potential intermediate and widely used as a precursor to synthesize novel optically active materials. In this study, chiral (3R)-AC production from meso-2,3-butanediol (meso-2,3-BD) was obtained using recombinant Escherichia coli cells co-expressing meso-2,3-butanediol dehydrogenase (meso-2,3-BDH), NADH oxidase (NOX), and hemoglobin protein (VHB) from Serratia sp. T241, Lactobacillus brevis, and Vitreoscilla, respectively. The new biocatalyst of E. coli/pET-mbdh-nox-vgb was developed and the bioconversion conditions were optimized. Under the optimal conditions, 86.74 g/l of (3R)-AC with the productivity of 3.61 g/l/h and the stereoisomeric purity of 97.89% was achieved from 93.73 g/l meso-2,3-BD using the whole-cell biocatalyst. The yield and productivity were new records for (3R)-AC production. The results exhibit the industrial potential for (3R)-AC production via whole-cell biocatalysis.

Characterization of Nitrile-hydrolyzing Enzymes Produced from Rhodococcus erythropolis (니트릴 분해효소 생산균인 Rhodococcus erythropolis의 발굴 및 효소 특성 연구)

  • Park Hyo-Jung;Park Ha-Joo;Uhm Ki-Nam;Kim Hyung-Kwoun
    • Microbiology and Biotechnology Letters
    • /
    • v.34 no.3
    • /
    • pp.204-210
    • /
    • 2006
  • Ethyl (S)-4-chloro-3-hydroxybutyrate is a useful intermediate for the synthesis of Atorvastatin, a chiral drug to hypercholesterolemia. In this research, two 4-chloro-3-hydroxybutyro-nitrile-degrading strains were isolated from soil sample. They were identified as Rhodococcus erythropolis strains by 16S rRNA analysis. The nitrile-degrading enzyme(s) were suggested to be nitrile hydratase and amidase rather than nitrilase from the result of thin layer chromatography analysis. The corresponding genes were obtained by PCR cloning method. The predicted protein sequences had identities more than 96% with nitrile hydratase ${\alpha}-subunit$, nitrile hydratase ${\beta}-subunit$, and amidase of R. erythropolis. The 4-chloro-3-hydroxybutyronitrile-hydrolyzing activities in both strains were increased dramatically by ${\varepsilon}-caprolactam$ which was known as good inducer for nitrile hydratase. Both intact cells and cell-free extract could hydrolyze the nitrile compound. So, the intact cell and the enzymes could be used as potential biocatalyst for the production of 4-chloro-3-hydroxybutyric acid.

Efficient Stereoselective Synthesis of (2S,3S,4S)-3,4-Dihydroxyglutamic Acid ((2S,3S,4S)-3,4-다이하이드록시글루타믹산의 효율적인 입체선택적 합성)

  • Jeon, Jongho;Shin, Nara;Lee, Jong Hyup;Kim, Young Gyu
    • Applied Chemistry for Engineering
    • /
    • v.25 no.4
    • /
    • pp.392-395
    • /
    • 2014
  • (2S,3S,4S)-3,4-Dihydroxyglutamic acid (DHGA), a biologically active ${\alpha},{\beta}$-dihydroxy-${\gamma}$-amino acid, was efficiently synthesized from a readily available D-serine derivative in 30% overall yield over 11 steps. The key stereoselective $OsO_4$-catalyzed dihydroxylation reaction controlled by an N-diphenylmethylene group on the amino group of ${\gamma}$-amino-${\alpha},{\beta}$-unsaturated (Z)-ester successfully introduced the diol moiety of the intermediate 5a in 86% with more than 10 : 1 diastereomeric ration. Then it was in turn successfully converted to the desired target compound, (2S,3S,4S)-3,4-DHGA, via simple oxidation and hydrolysis in a highly stereoselective manner and a higher yield than the previous syntheses. This result strongly supports that our synthetic methodology of stereoselective $OsO_4$-catalyzed dihydroxylation should be useful in stereoselctive synthesis of various bioactive compounds with an amino diol moiety.