• Title/Summary/Keyword: chipping silicon wafer

Search Result 7, Processing Time 0.019 seconds

A Study on Ultraprecision Dicing Machining of Silicon Wafer (실리콘 웨이퍼의 초정밀 절단가공에 관한 연구)

  • 김성철
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.502-506
    • /
    • 1999
  • Recently, the miniature of electric products such as notebook, cellular-phone etc. is apparently appeared, due to the smaller size of the semiconductor chips. As the size of chip gets smaller, the circuit could be easily damaged by the slightest influence, so it is important to control the chipping generation in the process of dicing. This paper deals with chipping of the silicon wafer dicing. The relationships between the dicing force and the wafer chipping are investigated. It is confirmed that the wafer chipping increases as the dicing force increases.

  • PDF

A Study on Ultraprecision Dicing Machining of Silicon Wafer (실리콘 웨이퍼의 초정밀 절단가공에 관한 연구)

  • 이은상;송지복;김성철
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.6
    • /
    • pp.185-191
    • /
    • 2000
  • Recently, a slightest influence to the circuit can be a great damage because the size of semiconductor smaller. It must be controlled the chippingless dicing process and the precision dicing without any damage to tile circuit. In this study, the relationship between chipping effect and the force of dicing was analysed. The rate of chipping was decreased as the farce of dicing decreased. It was also examined that the farce of dicing decreased according to the lower feed rate and higher blade speed. The lower feed rate and the higher blade speed must be controlled to achieve the chippingless process.

  • PDF

Analysis of die strength for laser dicing (레이저 다이싱에 의한 die strength 분석)

  • Lee, Young-Hyun;Choi, Kyung-Jin;Bae, Sung-Chang
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.327-329
    • /
    • 2006
  • In this paper, the cutting qualities by laser dicing and fracture strength of a silicon die is investigated. Laser micromachining is the non-contact process using thermal ablation and evaporation mechanisms. By these mechanisms, debris is generated and stick on the surface of wafer, which is the problem to apply laser dicing to semiconductor manufacture process. Unlike mechanical sawing using diamond blade, chipping on the surface and crack on the back side of wafer isn't made by laser dicing. Die strength by laser dicing is measured via the three-point bend test and is compared with the die strength by mechanical sawing. As a results, die strength by laser dicing shows a decrease of 50% in compared with die strength by mechanical sawing.

  • PDF

Development of Structured Hybrid Illumination System and Optimum Illumination Condition Selection for Detection of Surface Defects on Silicon Wafer in Solar Cell (태양전지 실리콘 웨이퍼의 표면결함 검출을 위한 구조적 하이브리드 조명시스템의 개발 및 최적 조건 선정)

  • An, Byung-In;Kim, Gyung-Bum
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.5
    • /
    • pp.505-512
    • /
    • 2012
  • In this study, an inspection system based on an optical scanning mechanism is developed for the inspection of silicon wafers in solar cells. In particular, a structured hybrid illumination system that can satisfy the illumination requirement for the detection of various defects is designed. In the hybrid illumination system, the optimum illumination conditions are selected by considering the design of experiment in master glass and silicon wafer. The illumination conditions available are B-high, BG-high, BR-high, and BGR-high for master glass and R-middle-B-medium for silicon wafers. By using the illumination conditions for silicon wafers, numerous surface defects like pinhole, scratch, and chipping, can be accurately detected. The hybrid illumination system is expected to be widely used for the inspection of silicon wafers in solar cells.

레이저를 이용한 웨이퍼 다이싱 특성 분석

  • Lee Yong-Hyeon;Choe Gyeong-Jin;Yu Seung-Ryeol;Yang Yeong-Jin;Bae Seong-Chang
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2006.05a
    • /
    • pp.251-254
    • /
    • 2006
  • In this paper, cutting qualifies and fracture strength of silicon dies by laser dicing are investigated. Laser micromachining is the non-contact process using thermal ablation and evaporation mechanisms. By these mechanisms, debris is generated and stick on the surface of wafer, which is the problem to apply laser dicing to semiconductor manufacture process. Unlike mechanical sawing using diamond blade, chipping on the surface and crack on the back side of wafer isn't made by laser dicing. Die strength by laser dicing is measured via the three-point bending test and is compared with the die strength by mechanical sawing. As a results, die strength by the laser dicing shows a decrease of 50% in compared with die strength by the mechanical sawing.

  • PDF

The Effect to Drilling by The Chemical Reaction on The Surface (표면 화학 반응이 드릴 가공에 미치는 영향)

  • 이현우;최재영;정상철;박준민;정해도;최헌종;이석우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.976-979
    • /
    • 2002
  • This research presents the new method to fabricate small features through applying chemical mechanical micro machining(C3M) for Al5052 and single crystal silicon. To improve machinability of ductile and brittle material, reacted layer was formed on the surface before micro-drilling process by chemical reaction with $HNO_3$(10wt%) and KOH(10wt%). And then workpieces were machined to compare conventional micro-drilling process with newly suggested one. To evaluate whether or not the machinability was improved by the effect of chemical condition, surface defects such as burr, chipping and crack generation were measured. Finally, it is confirmed that C3M is one of the feasible tools for micro machining with the aid of effect of the chemical reaction.

  • PDF

Development of Grinding Dressing System by Using Inprocess Electrelytic Dressing (정밀연삭기의 전해드레싱 시스템 개발사례)

  • 김정두
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.03a
    • /
    • pp.196-202
    • /
    • 1998
  • Recently, developments in the frontier industry have brought a rapid increase in the use of brittle materials such as silicon wafer, ferrite, sintered carbide, MgO single crystal and die steel. Because of high hardness and brittleness the cracking and chipping are apt to generate in the grinding of brittle materials, but have replaced gradually the high precision grinding. In this study, the optimum system of in-process electrolytic dressing controlled by computer was developed for improving the defects, and could maintain the optimum dressing condition at all times. The control of in-process dressing was simplified using this system, was able to maintain a stable dressing current and was unrelated to the change of dressing condition according to the variation of gap and oxide layer. Therefore, the optimum in-process electrolytic dressing system was constructed and the analysis of grinding mechanism with this system was studied.

  • PDF