• 제목/요약/키워드: chipping silicon wafer

검색결과 7건 처리시간 0.021초

실리콘 웨이퍼의 초정밀 절단가공에 관한 연구 (A Study on Ultraprecision Dicing Machining of Silicon Wafer)

  • 김성철
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1999년도 추계학술대회 논문집 - 한국공작기계학회
    • /
    • pp.502-506
    • /
    • 1999
  • Recently, the miniature of electric products such as notebook, cellular-phone etc. is apparently appeared, due to the smaller size of the semiconductor chips. As the size of chip gets smaller, the circuit could be easily damaged by the slightest influence, so it is important to control the chipping generation in the process of dicing. This paper deals with chipping of the silicon wafer dicing. The relationships between the dicing force and the wafer chipping are investigated. It is confirmed that the wafer chipping increases as the dicing force increases.

  • PDF

실리콘 웨이퍼의 초정밀 절단가공에 관한 연구 (A Study on Ultraprecision Dicing Machining of Silicon Wafer)

  • 이은상;송지복;김성철
    • 한국정밀공학회지
    • /
    • 제17권6호
    • /
    • pp.185-191
    • /
    • 2000
  • Recently, a slightest influence to the circuit can be a great damage because the size of semiconductor smaller. It must be controlled the chippingless dicing process and the precision dicing without any damage to tile circuit. In this study, the relationship between chipping effect and the force of dicing was analysed. The rate of chipping was decreased as the farce of dicing decreased. It was also examined that the farce of dicing decreased according to the lower feed rate and higher blade speed. The lower feed rate and the higher blade speed must be controlled to achieve the chippingless process.

  • PDF

레이저 다이싱에 의한 die strength 분석 (Analysis of die strength for laser dicing)

  • 이용현;최경진;배성창
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.327-329
    • /
    • 2006
  • In this paper, the cutting qualities by laser dicing and fracture strength of a silicon die is investigated. Laser micromachining is the non-contact process using thermal ablation and evaporation mechanisms. By these mechanisms, debris is generated and stick on the surface of wafer, which is the problem to apply laser dicing to semiconductor manufacture process. Unlike mechanical sawing using diamond blade, chipping on the surface and crack on the back side of wafer isn't made by laser dicing. Die strength by laser dicing is measured via the three-point bend test and is compared with the die strength by mechanical sawing. As a results, die strength by laser dicing shows a decrease of 50% in compared with die strength by mechanical sawing.

  • PDF

태양전지 실리콘 웨이퍼의 표면결함 검출을 위한 구조적 하이브리드 조명시스템의 개발 및 최적 조건 선정 (Development of Structured Hybrid Illumination System and Optimum Illumination Condition Selection for Detection of Surface Defects on Silicon Wafer in Solar Cell)

  • 안병인;김경범
    • 대한기계학회논문집A
    • /
    • 제36권5호
    • /
    • pp.505-512
    • /
    • 2012
  • 본 논문에서 태양전지 실리콘 웨이퍼 검사를 위해 광학스캐닝 메커니즘 기반 검사장비를 개발하였다. 그 중에서 다양한 결함검사 요구와 적절한 조명조건을 만족하는 구조적 하이브리드 조명시스템을 설계하였다. 그 다음으로 실험계획법을 이용하여 구조적 하이브리드 조명시스템의 최적 조명조건을 마스터 유리와 실리콘 웨이퍼에서 선정하였다. 마스터 유리에서 최적 조명조건은 B-강, BG-강, BR-강, BGR-강 이며, 실리콘 웨이퍼에서 최적조건은 R-중-B-중 이다. 이 최적조명조건을 적용하여 실리콘 웨이퍼 표면을 검사한 결과, 핀홀, 스크래치, 치핑 등 다수의 표면결함을 정확하게 검출하였다. 구조적 하이브리드 조명시스템은 태양전지 실리콘 웨이퍼 표면결함 검사에 유용하게 사용될 수 있다.

레이저를 이용한 웨이퍼 다이싱 특성 분석

  • 이용현;최경진;유승렬;양영진;배성창
    • 한국반도체및디스플레이장비학회:학술대회논문집
    • /
    • 한국반도체및디스플레이장비학회 2006년도 춘계학술대회
    • /
    • pp.251-254
    • /
    • 2006
  • In this paper, cutting qualifies and fracture strength of silicon dies by laser dicing are investigated. Laser micromachining is the non-contact process using thermal ablation and evaporation mechanisms. By these mechanisms, debris is generated and stick on the surface of wafer, which is the problem to apply laser dicing to semiconductor manufacture process. Unlike mechanical sawing using diamond blade, chipping on the surface and crack on the back side of wafer isn't made by laser dicing. Die strength by laser dicing is measured via the three-point bending test and is compared with the die strength by mechanical sawing. As a results, die strength by the laser dicing shows a decrease of 50% in compared with die strength by the mechanical sawing.

  • PDF

표면 화학 반응이 드릴 가공에 미치는 영향 (The Effect to Drilling by The Chemical Reaction on The Surface)

  • 이현우;최재영;정상철;박준민;정해도;최헌종;이석우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.976-979
    • /
    • 2002
  • This research presents the new method to fabricate small features through applying chemical mechanical micro machining(C3M) for Al5052 and single crystal silicon. To improve machinability of ductile and brittle material, reacted layer was formed on the surface before micro-drilling process by chemical reaction with $HNO_3$(10wt%) and KOH(10wt%). And then workpieces were machined to compare conventional micro-drilling process with newly suggested one. To evaluate whether or not the machinability was improved by the effect of chemical condition, surface defects such as burr, chipping and crack generation were measured. Finally, it is confirmed that C3M is one of the feasible tools for micro machining with the aid of effect of the chemical reaction.

  • PDF

정밀연삭기의 전해드레싱 시스템 개발사례 (Development of Grinding Dressing System by Using Inprocess Electrelytic Dressing)

  • 김정두
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1998년도 춘계학술대회 논문집
    • /
    • pp.196-202
    • /
    • 1998
  • Recently, developments in the frontier industry have brought a rapid increase in the use of brittle materials such as silicon wafer, ferrite, sintered carbide, MgO single crystal and die steel. Because of high hardness and brittleness the cracking and chipping are apt to generate in the grinding of brittle materials, but have replaced gradually the high precision grinding. In this study, the optimum system of in-process electrolytic dressing controlled by computer was developed for improving the defects, and could maintain the optimum dressing condition at all times. The control of in-process dressing was simplified using this system, was able to maintain a stable dressing current and was unrelated to the change of dressing condition according to the variation of gap and oxide layer. Therefore, the optimum in-process electrolytic dressing system was constructed and the analysis of grinding mechanism with this system was studied.

  • PDF