• Title/Summary/Keyword: chip processing

Search Result 808, Processing Time 0.03 seconds

An impulse radio (IR) radar SoC for through-the-wall human-detection applications

  • Park, Piljae;Kim, Sungdo;Koo, Bontae
    • ETRI Journal
    • /
    • v.42 no.4
    • /
    • pp.480-490
    • /
    • 2020
  • More than 42 000 fires occur nationwide and cause over 2500 casualties every year. There is a lack of specialized equipment, and rescue operations are conducted with a minimal number of apparatuses. Through-the-wall radars (TTWRs) can improve the rescue efficiency, particularly under limited visibility due to smoke, walls, and collapsed debris. To overcome detection challenges and maintain a small-form factor, a TTWR system-on-chip (SoC) and its architecture have been proposed. Additive reception based on coherent clocks and reconfigurability can fulfill the TTWR demands. A clock-based single-chip infrared radar transceiver with embedded control logic is implemented using a 130-nm complementary metal oxide semiconductor. Clock signals drive the radar operation. Signal-to-noise ratio enhancements are achieved using the repetitive coherent clock schemes. The hand-held prototype radar that uses the TTWR SoC operates in real time, allowing seamless data capture, processing, and display of the target information. The prototype is tested under various pseudo-disaster conditions. The test standards and methods, developed along with the system, are also presented.

Design of Efficient Flicker Detector for CMOS Image Sensor (CMOS Image sensor 를 위한 효과적인 플리커 검출기 설계)

  • Lee, Pyeong-Woo;Lee, Jeong-Guk;Kim, Chae-Sung
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.739-742
    • /
    • 2005
  • In this paper, an efficient detection algorithm for the flicker, which is caused by mismatching between light frequency and exposure time at CMOS image sensor (CIS), is proposed. The flicker detection can be implemented by specific hardware or complex signal processing logic. However it is difficult to implement on single chip image sensor, which has pixel, CDS, ADC, and ISP on a die, because of limited die area. Thus for the flicker detection, the simple algorithm and high accuracy should be achieved on single chip image sensor,. To satisfy these purposes, the proposed algorithm organizes only simple operation, which calculates the subtraction of horizontal luminance mean between continuous two frames. This algorithm was verified with MATLAB and Xilinx FPGA, and it is implemented with Magnachip 0.18 standard cell library. As a result, the accuracy is 95% in average on FPGA emulation and the consumed gate count is about 7,500 gates (@40MHz) for implementation using Magnachip 0.18 process.

  • PDF

An Efficient Architecture of The MF-VLD (MF-VLD에 대한 효율적인 하드웨어 구조)

  • Suh, Ki-Bum
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.11
    • /
    • pp.57-62
    • /
    • 2011
  • In this paper, an efficient architecture for MFVLD(Multi-Format Variable Length Decoder) which can process H.264, MPEG-2, MPEG-4, AVS, VC-1 bitstream is proposed. The proposed MF-VLD is designed to be adapted to the MPSOC (Multi-processor System on Chip) architecture, uses bit-plane algorithm for the processing of inverse quantized data to reduce the width of AHB bus. External SDRAM is used to minimize the internal memory size. In this architecture, the adding or removing each variable length decoder can be easily done by using multiplexor. The designed MF-VLD can be operated in 200MHz at 0.18um process. The gate size is 657K gate and internal memory size is 27Kbyte.

Fabrication of Metallic Nano-Filter Using UV-Imprinting Process (UV 임프린팅 공정을 이용한 금속막 필터제작)

  • Noh Cheol Yong;Lee Namseok;Lim Jiseok;Kim Seok-min;Kang Shinill
    • Transactions of Materials Processing
    • /
    • v.14 no.5 s.77
    • /
    • pp.473-476
    • /
    • 2005
  • The demand of on-chip total analyzing system with MEMS (micro electro mechanical system) bio/chemical sensor is rapidly increasing. In on-chip total analyzing system, to detect the bio/chemical products with submicron feature size, a filtration system with nano-filter is required. One of the conventional methods to fabricate nano-filter is to use direct patterning or RIE (reactive ion etching). However, those procedures are very costly and are not suitable fur mass production. In this study, we suggested new fabrication method for a nano-filter based on replication process, which is simple and low cost process. After the Si master was fabricated by laser interference lithography and reactive ion etching process, the polymeric mold was replicated by UV-imprint process. Metallic nano-filter was fabricated after removing the polymeric part of metal deposited polymeric mold. Finally, our fabrication method was applied to metallic nano-filter with $1{\mu}m$ pitch size and $0.4{\mu}m$ hole size for bacteria sensor application.

A Study on the Development of Computer Aider Die Design System for Lead Frame of Semiconductor Chip

  • Kim, Jae-Hun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.2
    • /
    • pp.38-47
    • /
    • 2001
  • This paper decribes the development of computer-aided design of a very precise progressice die for lead frame of semiconductor chip. The approach to the system is based on knowledgr-based rules. Knowledge of fie이 experts. This system has been written in AutoLISP using AutoCAD ona personal computer and the I-DEAS drafting programming Language on the I-DEAS mater series drafting with on HP9000/715(64) workstation. Data exchange between AutoCAD and I-DEAS master series drafting is accomplished using DXF(drawing exchange format) and IGES(initial graphics exchange specification) files. This system is composed of six main modules, which are input and shape treatment, production feasibility check, strip layout, data conversion, die layout, and post processing modules. Based on Knowledge-based rules, the system considers several factors, such as V-notches, dimple, pad chamfer, spank, cavity punch, camber, coined area, cross bow, material and thickness of product, complexities of blank geometry and punch profiles, specifications of available presses, and the availability of standard parts. As forming processes and the die design system using 2D geometry recognition are integrated with the technology of process planning, die design, and CAE analysis, the standardization of die part for lead frames requiting a high precision process is possible. The die layout drawing generated by the die layout module s displayed in graphic form. The developed system makes it possible to design and manufacture lead frame of a semiconductor more efficiently.

  • PDF

Quality Measurement Algorithm for IS-95 Reverse-link Signal (IS-95 역방향링크 신호의 품질 측정 알고리즘)

  • Kang, Sung-Jin;Kim, Nam-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.9
    • /
    • pp.3428-3434
    • /
    • 2010
  • In this paper, we proposed and implemented a quality measurement algorithm for IS-95 reverse-link signal. To measure the quality of the received signal, equalization, carrier frequency/phase offset estimation, and timing synchronization are essential. And, all signal processing are carried out with baseband signal. The equalizer works with 4-oversampled samples to remove ICI(InterChip Interference). The frequency/phase offset estimator is followed by timing synchronizer since it can work without aid of data and timing information. As the number of interpolation in timing synchronization increases, the measurement accuracy improves, but computation load increases simultaneously. Therefore, one need to choose adequately the number of interpolation regarding to the platform performance to be used for the proposed algorithm.

The Development of the Data Error Inspection Algorithm for the Remote Sensing by Wireless Communication (원격계측을 위한 무선 통신 에러 검사 알고리즘 개발)

  • 김희식;김영일;설대연;남철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.993-997
    • /
    • 2004
  • A data error inspection algorithm for wireless digital data communication was developed. Original data converted By wireless digital data error inspection algorithm. Wireless digital data is high possibility to get distortion and lose by noise and barrier on wireless. If the data check damaged and lost at receiver, can't make it clear and can't judge whether this data is right or not. Therefore, by wireless transmission data need the data error inspection algorithm in order to decrease the data distortion and lose and to monitoring the transmission data as real time. This study consists of RF station for wireless transmission, Water Level Meter station for water level measurement and Error inspection algorithm for error check of transmission data. This study is also that investigation and search for error inspection algorithm in order to wireless digital data transmission in condition of the least data's damage and lose. Designed transmitter and receiver with one - chip micro process to protect to swell the volume of circuit. Had designed RF transmitter - receiver station simply by means of ATMEL one - chip micro processing the systems. Used 10mW of the best RF power and 448MHz-449MHz on frequency band which is open to public touse free within the limited power.

  • PDF

Verification of an Autonomous Decentralized UPS System with Fast Transient Response Using a FPGA-Based Hardware Controller

  • Yokoyama, Tomoki;Doi, Nobuaki;Ishioka, Toshiya
    • Journal of Power Electronics
    • /
    • v.9 no.3
    • /
    • pp.507-515
    • /
    • 2009
  • This paper proposes an autonomous decentralized control for a parallel connected uninterruptible power supply (UPS) system based on a fast power detection method using a FPGA based hardware controller for a single phase system. Each UPS unit detects only its output voltage and current without communications signal exchange and a quasi dq transformation method is applied to detect the phase and amplitude of the output voltage and the output current for the single phase system. Fast power detection can be achieved based on a quasi dq transformation, which results in a realization of very fast transient response under rapid load change. In the proposed method, the entire control system is implemented in one FPGA chip. Complicated calculations are assigned to hardware calculation logic, and the parallel processing circuit makes it possible to realize minimized calculation time. Also, an Nios II CPU core is implemented in the same FPGA chip, and the software can be applied for non-time critical calculations. Applying this control system, an autonomous decentralized UPS system with very fast transient response is realized. Feasibility and stable operation are confirmed by means of an experimental setup with three UPSs connected in parallel. Also, rapid load change is applied and excellent performance of the system is confirmed in terms of transient response and stability.

A Study on the Verification Platform Architecture for MPSoC (MPSoC 검증 플랫폼 구조에 관한 연구)

  • Song, Tae-Hoon;Song, Moon-Vin;Oh, Chae-Gon;Chung, Yun-Mo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.8
    • /
    • pp.74-79
    • /
    • 2007
  • In general, the high cost, long time, and complex steps are required in the design and implementation of MPSoC(Multi-Processor System on a Chip), therefore a platform is used to test the functionality and performance of IPs(Intellectual Properties). In this paper, we study a platform architecture to verify IPs based on Interconnect Network among processors, and show that the MPSoC platform gives better performance than a single processor for an application program.

Power Distribution Network Modeling using Block-based Approach

  • Chew, Li Wern
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.4
    • /
    • pp.75-79
    • /
    • 2013
  • A power distribution network (PDN) is a network that provides connection between the voltage source supply and the power/ground terminals of a microprocessor chip. It consists of a voltage regulator module, a printed circuit board, a package substrate, a microprocessor chip as well as decoupling capacitors. For power integrity analysis, the board and package layouts have to be transformed into an electrical network of resistor, inductor and capacitor components which may be expressed using the S-parameters models. This modeling process generally takes from several hours up to a few days for a complete board or package layout. When the board and package layouts change, they need to be re-extracted and the S-parameters models also need to be re-generated for power integrity assessment. This not only consumes a lot of resources such as time and manpower, the task of PDN modeling is also tedious and mundane. In this paper, a block-based PDN modeling is proposed. Here, the board or package layout is partitioned into sub-blocks and each of them is modeled independently. In the event of a change in power rails routing, only the affected sub-blocks will be reextracted and re-modeled. Simulation results show that the proposed block-based PDN modeling not only can save at least 75% of processing time but it can, at the same time, keep the modeling accuracy on par with the traditional PDN modeling methodology.