• Title/Summary/Keyword: chimney failure

Search Result 5, Processing Time 0.019 seconds

Wind fragility analysis of RC chimney with temperature effects by dual response surface method

  • Datta, Gaurav;Sahoo, Avinandan;Bhattacharjya, Soumya
    • Wind and Structures
    • /
    • v.31 no.1
    • /
    • pp.59-73
    • /
    • 2020
  • Wind fragility analysis (WFA) of concrete chimney is often executed disregarding temperature effects. But combined wind and temperature effect is the most critical limit state to define the safety of a chimney. Hence, in this study, WFA of a 70 m tall RC chimney for combined wind and temperature effects is explored. The wind force time-history is generated by spectral representation method. The safety of chimney is assessed considering limit states of stress failure in concrete and steel. A moving-least-squares method based dual response surface method (DRSM) procedure is proposed in WFA to alleviate huge computational time requirement by the conventional direct Monte Carlo simulation (MCS) approach. The DRSM captures the record-to-record variation of wind force time-histories and uncertainty in system parameters. The proposed DRSM approach yields fragility curves which are in close conformity with the most accurate direct MCS approach within substantially less computational time. In this regard, the error by the single-level RSM and least-squares method based DRSM can be easily noted. The WFA results indicate that over temperature difference of 150℃, the temperature stress is so pronounced that the probability of failure is very high even at 30 m/s wind speed. However, below 100℃, wind governs the design.

Gross dynamic failure of toppling block structures

  • Wilson, James F.
    • Structural Engineering and Mechanics
    • /
    • v.8 no.5
    • /
    • pp.491-504
    • /
    • 1999
  • The initiation of toppling is explored for a uniform stack of blocks that rotates slowly about its mid-base. As the stack passes through its vertical position ($\theta$=0), it is in free-fall rotation, and a critical inclination angle ${\theta}_c$ is reached at which the toppling stack "fails" or begins to crack or separate. For tall stacks (high aspect ratios), two modes of failure are hypothesized, for which the dynamic failure analyses are shown to correlate with experimental results. These block failure modes are similar to those observed for tall, toppling masonry structures with weak binding material between their brick or stone blocks.

Seismic Fragility Evaluation of Chimney Structure in Power Plant by Finite Element Analysis (유한요소 해석을 통한 발전소 연돌 구조물의 지진취약도 분석)

  • Kwon, Gyu-Bin;Kim, Jin-Sup;Kwon, Min-Ho;Park, Kwan-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.276-284
    • /
    • 2019
  • Seismic research on bridges, dams and nuclear power plants, which are infrastructure in Korea, has been carried out since early on, but in the case of structures in thermal power plants, research is insufficient. In this study, a total of 192 dynamic analyzes were performed for 16 actual seismic waves and 12 PGAs. As a result, the probability of failure increased as the PGA value increased for each applied seismic wave, but it was different for each seismic wave. As a result, at 0.22G, the ratio of the compressive limit reached to the limit state was 25% and the ratio of the relative displacement reached the limit state was 13%. So, the probability of collapse due to compressive failure Is higher. Therefore, the fragility curve of the chimney which is the subject of this study can be used as a quantitative basis to determine the limit state of the target structure when an earthquake occurs and to be used for the safety design of the thermal power plants.

On the wind and earthquake response of reinforced concrete chimneys

  • Turkeli, Erdem;Karaca, Zeki;Ozturk, Hasan Tahsin
    • Earthquakes and Structures
    • /
    • v.12 no.5
    • /
    • pp.559-567
    • /
    • 2017
  • Slender structures like reinforced concrete (RC) chimneys are severely damaged or collapsed during severe wind storms or strong ground motions all over the world. Today, with the improvement in technology and industry, most factories need these slender structures with increasing height and decreasing in shell thickness causing vulnerable to winds and earthquakes. Main objectives in this study are to make structural wind and earthquake analysis of RC chimneys by using a well-known international standard CICIND 2001 and real recorded time history accelerations and to clarify weak points of these tall and slender structures against these severe natural actions. Findings of this study show that maximum tensile stress and shear stress approximately increase 103.90% and 312.77% over or near the openings on the body of the RC chimneys that cause brittle failure around this region of openings.

A Study on the Construction of Waste Incineration Facility by Pyrolysis Type in Iksan City (익산시의 열분해방식 폐기물 소각시설 건설에 관한 연구)

  • 육찬남
    • Journal of environmental and Sanitary engineering
    • /
    • v.17 no.3
    • /
    • pp.60-66
    • /
    • 2002
  • Iksan city is planning to construct a waste incinerator on the site of about $110,000\textrm{m}^2$ in size that will be selected from a public bid(Oct.~Nov.2002)in the wake of expiration by June 2003 of use for Hamyeol fill-up ground. Science it has usually been difficult to find sites for filling-up or incinerating facilities owing to NIMBY phenomenon, it is badly requested to employ up-to-date technology for processing wastes without environmental pollution. The conflicts between the administrative authorities and community people with regard to construction of incineration facilities, fill-up ground and facilities for waste processing or recycling are not the matters of just today but are increasingly deepening and spreading countrywide. There seems to be no prospect for these conflicts to be amicably settled through dialogues. They rather become a social disease inflicting the whole country like an epidemic. It is therefore believed to be necessary to introduce measures to design and build environment-friendly facilities that may be accepted by residents as not abominable ones but be used as amusing place while they watch the daily operation of them as watchdogs. Iksan city's plan to construct environment-friendly waste incineration facilities of pyrolysis type without chimney has undergone the process of public hearings and explanatory gatherings from every class of Iksan citizens to get consensus but is still delayed due mainly to be the failure of inducing foreign investments. Pyrolysis technology has two advantages ; first, environment-friendly due to less emission of second pollutants ; second, production of by-products highly valuable as resources. It Is known that Germany has recently begun installation and operation of pyrolysis facility urban wastes, an evidence indicating that pyrolysis method will be widely applied to cope with the tightened regulation to preserve environment worldwide.