• Title/Summary/Keyword: chicken breeding

Search Result 127, Processing Time 0.024 seconds

Genetic Linkage Mapping of RAPD Markers Segregating in Korean Ogol Chicken - White Leghorn Backcross Population

  • Hwang, K.C.;Song, K.D.;Kim, T.H.;Jeong, D.K.;Sohn, S.H.;Lillehoj, H.S.;Han, J.Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.3
    • /
    • pp.302-306
    • /
    • 2001
  • This study was carried out to construct mapping population and to evaluate the methods involved, including polymorphic DNA marker system and appropriate statistical analysis. As an initial step to establish chicken genome mapping project, White Leghorn (WL) and Korean Ogol chicken (KOC) were used for generating backcross population. From 8 initial parents, total 280 backcross progenies were obtained and 40 were used for genotyping and linkage analysis. For development of novel polymorphic markers for KOC, Random Amplified Polymorphic DNA (RAPD) markers specific for this chicken line were generated. Also included in this study were six microsatellite markers from East Lansing map as reference loci. For segregation analysis, 15 RAPD markers and 6 microsatellites were used to genotype the backcross population. Among the RAPD markers that we developed, 2 pairs of markers were identified to be linked and another 4 RAPD markers showed linkage with microsatellites of known map. In summary, this study showed that our backcross population generated from the mating of KOC to WL serves as a valuable genetic resource for genotyping. Furthermore, RAPD markers are proved to be valuable in linkage mapping analysis.

오골계의 기원과 유전적 다양성

  • Lee, Yu-Ju;Jeon, Eol;Jeong, Haeng-Jin;Jeong, U-Yeong;Jang, Byeong-Gwi;Baek, Un-Gi;Choe, Gang-Deok;Lee, Jun-Heon
    • Proceedings of the Korea Society of Poultry Science Conference
    • /
    • 2005.11a
    • /
    • pp.62-63
    • /
    • 2005
  • Korean Ogol Chicken is a natural treasure in Korea and expected to be a valuable genetics resource in the world. As an initial step to investigate the genetic structures of this breed, phylogenetic analysis has been performed using mitochondrial DNA (mtDNA) sequence variations. Total 30 Korean Ogol Chickens were investigated in this study and they were grouped into 4 haplotypes, consisting 11 birds in the largest haplotype. Based on the phylogenetic analysis, chicken breeds were divided into three major groups and Korean Ogol Chicken were appeared all of these three groups indicating their large genetic mtDNA diversity. These results will be used for making breeding and conservation strategies for this breed.

  • PDF

Feeding Value of High-oil Corn for Taiwan Country Chicken

  • Lin, Min-Jung;Chiou, Peter Wen-Shyg;Chang, Shen-Chang;Croom, Jim;Fan, Yang-Kwang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.9
    • /
    • pp.1348-1354
    • /
    • 2003
  • The feeding value of high-oil corn fed to Taiwan Country (TC) chicken was examined by measuring apparent metabolizable energy (AME), growth performance, sexual maturity, carcass characteristics, and plasma pigmentation. In a completely randomized design, 870 sex-intermingled one-wk-old chicks were assigned to one of 30 floor pens, 29 birds per pen, and each pen randomly assigned to one of five dietary treatments. The experiment was ended when birds were 16 wk of age. The five dietary treatments varied in main fat sources, which were corn oil (CO), high-oil corn (HOC), lard (LRD), whole soybean (WSB) and yellow corn (YC), respectively. All the diets were formulated isonitrogenously, isocalorically, and of equal lysine and methionine contents except YC, in which equal amounts of YC replaced HOC. The results indicated that feed conversion in HOC was 8% higher (p<0.05) than YC whereas the calculated AME of HOC was only 3.5% to 4.0% higher than that of YC. No significant differences were observed in body weight, body weight gain, feed consumption, feed conversion ratio and ME efficiency for body weight gain among CO, HOC, LRD, and WSB. No significant differences existed in both skin and muscle pigmentation of breast among the five dietary treatments. No significance differences existed in plasma carotenoid content measured at various ages among the five dietary treatments except that birds fed with HOC had less (p<0.05) plasma carotenoids at 16 wk-old. The results indicate that if the price of high-oil corn is no more than 1.05 times that of yellow corn, the dietary cost per kg of body weight gain for TC chickens fed diets containing high-oil corn will be less, although their body weight may be lighter compared to chickens fed diets formulated with other fat sources.

Genotype Analysis of the Major Histocompatibility Complex Region in Korean Native Chicken (한국 재래닭의 MHC 영역 유전자형 분석)

  • Jung, Kie-Chul;Hoque, Md. Rashedul;Seo, Dong-Won;Park, Byung-Kwon;Choi, Kang-Duk;Lee, Jun-Heon
    • Korean Journal of Poultry Science
    • /
    • v.36 no.4
    • /
    • pp.317-322
    • /
    • 2009
  • The chicken major histocompatibility complex (MHC) is known to be associated with disease resistance and susceptibility to several pathogens. The microsatellite marker LEI0258 is physically located between the BG and BF of MHC region and variations near this marker have been well documented. In this report, the LEI0258 marker was used to find specific alleles for the Korean native chicken. The MHC haplotype was analyzed by PCR screening and sequencing of LEI0258 region in four different breeds including black Korean native chicken, brown Korean native chicken, Cornish and Rhode island red. The serologically same MHC haplotypes showed the differences in repeat numbers, a few indels or single nucleotide polymorphisms by sequencing analysis. Even though we could not identify specific alleles for Korean native chickens, the genotypes analyzed in these breeds can give valuable information for the relationships with disease resistance and establishment of breeding strategies for the Korean native chicken.

Investigation of MC1R SNPs and Their Relationships with Plumage Colors in Korean Native Chicken

  • Hoque, M.R.;Jin, S.;Heo, K.N.;Kang, B.S.;Jo, C.;Lee, J.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.5
    • /
    • pp.625-629
    • /
    • 2013
  • The melanocortin 1 receptor (MC1R) gene is related to the plumage color variations in chicken. Initially, the MC1R gene from 30 individuals was sequenced and nine polymorphisms were obtained. Of these, three and six single nucleotide polymorphisms (SNPs) were confirmed as synonymous and nonsynonymous mutations, respectively. Among these, three selected SNPs were genotyped using the restriction fragment length polymorphism (RFLP) method in 150 individuals from five chicken breeds, which identified the plumage color responding alleles. The neighbor-joining phylogenetic tree using MC1R gene sequences indicated three well-differentiated different plumage pigmentations (eumelanin, pheomelanin and albino). Also, the genotype analyses indicated that the TT, AA and GG genotypes corresponded to the eumelanin, pheomelanin and albino plumage pigmentations at nucleotide positions 69, 376 and 427, respectively. In contrast, high allele frequencies with T, A and G alleles corresponded to black, red/yellow and white plumage color in 69, 376 and 427 nucleotide positions, respectively. Also, amino acids changes at position Asn23Asn, Val126Ile and Thr143Ala were observed in melanin synthesis with identified possible alleles, respectively. In addition, high haplotype frequencies in TGA, CGG and CAA haplotypes were well discriminated based on the plumage pigmentation in chicken breeds. The results obtained in this study can be used for designing proper breeding and conservation strategies for the Korean native chicken breeds, as well as for the developing breed identification markers in chicken.

Genome-wide association study for the free amino acid and nucleotide components of breast meat in an F2 crossbred chicken population

  • Minjun Kim;Eunjin Cho;Jean Pierre Munyaneza;Thisarani Kalhari Ediriweera;Jihye Cha;Daehyeok Jin;Sunghyun Cho;Jun Heon Lee
    • Journal of Animal Science and Technology
    • /
    • v.65 no.1
    • /
    • pp.57-68
    • /
    • 2023
  • Flavor is an important sensory trait of chicken meat. The free amino acid (FAA) and nucleotide (NT) components of meat are major factors affecting meat flavor during the cooking process. As a genetic approach to improve meat flavor, we performed a genome-wide association study (GWAS) to identify the potential candidate genes related to the FAA and NT components of chicken breast meat. Measurements of FAA and NT components were recorded at the age of 10 weeks from 764 and 767 birds, respectively, using a White leghorn and Yeonsan ogye crossbred F2 chicken population. For genotyping, we used 60K Illumina single-nucleotide polymorphism (SNP) chips. We found a total of nine significant SNPs for five FAA traits (arginine, glycine, lysine, threonine content, and the essential FAAs and one NT trait (inosine content), and six significant genomic regions were identified, including three regions shared among the essential FAAs, arginine, and inosine content traits. A list of potential candidate genes in significant genomic regions was detected, including the KCNRG, KCNIP4, HOXA3, THSD7B, and MMUT genes. The essential FAAs had significant gene regions the same as arginine. The genes related to arginine content were involved in nitric oxide metabolism, while the inosine content was possibly affected by insulin activity. Moreover, the threonine content could be related to methylmalonyl-CoA mutase. The genes and SNPs identified in this study might be useful markers in chicken selection and breeding for chicken meat flavor.

Relationship between Differential Expression of Estrogen Receptor and Follicle Stimulating Hormone Receptor Genes in Ovary and Heterosis of Egg Number Traits in Chickens

  • Wang, Hui;Sun, Dongxiao;Yu, Ying;Wang, Dong;Zhang, Yi;Zhang, Yuan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.3
    • /
    • pp.325-330
    • /
    • 2008
  • In order to understand the molecular mechanism of heterosis of reproduction traits in chickens, we used the quantitative real-time reverse transcriptional polymerase chain reaction (Quantitative real-time RT-PCR) technique to investigate the differential expression of estrogen receptor (ESR) and follicle stimulating hormone receptor (FSHR) genes in 32-week-old ovaries of inbred chickens and their hybrid offspring in $4{\times}4$ diallel crosses, which involved White Plymouth Rock (E), CAU Brown (D), Silkies (C) and White Leghorn (A). We found that there were significant differences in mRNA expression of ESR and FSHR genes not only between hybrids and their parental lines (p<0.01), but also among different crosses (p<0.01). Furthermore, positive correlations between differential expression of both ESR and FHSR in hybrids and heterosis percentages of 32-week-old and 42-week-old egg number traits were significant at p<0.05. Our results suggested that differential expression of ESR and FSHR genes in the ovaries of inbred chickens and their hybrids could play roles in the formation of heterosis of egg number traits to some extent.

Discrimination of Korean Native Chicken Populations Using SNPs from mtDNA and MHC Polymorphisms

  • Hoque, M.R.;Lee, S.H.;Jung, K.C.;Kang, B.S.;Park, M.N.;Lim, H.K.;Choi, K.D.;Lee, J.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.12
    • /
    • pp.1637-1643
    • /
    • 2011
  • Korean native chickens are a very valuable chicken population in Korea and their prices are higher than that of commercial broilers. In order to discriminate two commercial Korean native chicken populations (CCP1 and CCP2), single nucleotide polymorphisms (SNPs) from mitochondrial (mt) DNA D-loop sequences and LEI0258 marker polymorphisms in the major histocompatibility complex (MHC) region were investigated. A total of 718 birds from nine populations were sampled and 432 mtDNA sequences were obtained. Of these, two commercial Korean native chicken populations (363 birds) were used for investigation of their genetic relationship and breed differentiation. The sequence data classified the chickens into 20 clades, with the largest number of birds represented in clade 1. Analysis of the clade distribution indicated the genetic diversity and relation among the populations. Based on the mtDNA sequence analysis, three selected SNPs from mtDNA polymorphisms were used for the breed identification. The combination of identification probability (Pi) between CCP1 and CCP2 using SNPs from mtDNA and LEI0258 marker polymorphisms was 86.9% and 86.1%, respectively, indicating the utility of these markers for breed identification. The results will be applicable in designing breeding and conservation strategies for the Korean native chicken populations and also used for the development of breed identification markers.

Single Nucleotide Polymorphisms on Peroxisome Proliferator-activated Receptor Genes Associated with Fatness Traits in Chicken

  • Meng, H.;Zhao, J.G.;Li, Z.H.;Li, H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.9
    • /
    • pp.1221-1225
    • /
    • 2005
  • The peroxisome proliferator-activated receptors (PPARs) are members of a superfamily of nuclear hormone receptors. Lots of studies in rodents and humans have shown that PPARs were involved in lipid metabolism and adipocyte differentiation. The main objective of this work was to detect the single nucleotide polymorphisms (SNPs) in whole coding regions of peroxisome proliferator-activated receptor alpha (PPAR-$\alpha$) and gamma (PPAR-$\gamma$) genes with approach of single strand conformation polymorphism (SSCP) in the chicken population of Arber Acres broiler, Hyline layer and three Chinese native breeds (Shiqiza, Beijing You, Bai'r). Two SNPs of C1029T and C297T were found in chicken PPAR-$\alpha$ and PPAR-$\gamma$ genes respectively and each SNP found three genotypes in the experimental populations. The results showed that the distribution frequency of 3 genotypes in Arber Acres broiler, Hyline layer and Chinese native breeds had significant differences on the PPAR-$\alpha$ and PPAR-$\gamma$ gene respectively (p<0.01). Furthermore, in the PPAR-$\alpha$ gene, the results of least square estimation for genotypes and body composition traits showed the BB genotype birds had higher abdominal fat weight (AFW) and percentage of abdominal fat (AFP) than AA genotype birds (p<0.05). From these we conjecture the PPAR-$\alpha$ and PPAR-$\gamma$ genes were suffered intensive selection during the long term commercial breeding and the PPAR-$\alpha$ gene may be a major gene or linked to the major genes that impact chicken fat metabolism and the SNPs could be used in molecular assistant selection (MAS) as a genetic marker for the chicken fatness traits.

Discrimination of Korean Native Chicken Lines Using Fifteen Selected Microsatellite Markers

  • Seo, D.W.;Hoque, M.R.;Choi, N.R.;Sultana, H.;Park, H.B.;Heo, K.N.;Kang, B.S.;Lim, H.T.;Lee, S.H.;Jo, C.;Lee, J.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.3
    • /
    • pp.316-322
    • /
    • 2013
  • In order to evaluate the genetic diversity and discrimination among five Korean native chicken lines, a total of 86 individuals were genotyped using 150 microsatellite (MS) markers, and 15 highly polymorphic MS markers were selected. Based on the highest value of the number of alleles, the expected heterozygosity (He) and polymorphic information content (PIC) for the selected markers ranged from 6 to 12, 0.466 to 0.852, 0.709 to 0.882 and 0.648 to 0.865, respectively. Using these markers, the calculated genetic distance (Fst), the heterozygote deficit among chicken lines (Fit) and the heterozygote deficit within chicken line (Fis) values ranged from 0.0309 to 0.2473, 0.0013 to 0.4513 and -0.1002 to 0.271, respectively. The expected probability of identity values in random individuals (PI), random half-sib ($PI_{half-sibs}$) and random sibs ($PI_{sibs}$) were estimated at $7.98{\times}10^{-29}$, $2.88{\times}10^{-20}$ and $1.25{\times}10^{-08}$, respectively, indicating that these markers can be used for traceability systems in Korean native chickens. The unrooted phylogenetic neighbor-joining (NJ) tree was constructed using 15 MS markers that clearly differentiated among the five native chicken lines. Also, the structure was estimated by the individual clustering with the K value of 5. The selected 15 MS markers were found to be useful for the conservation, breeding plan, and traceability system in Korean native chickens.