• Title/Summary/Keyword: chicken breeding

Search Result 127, Processing Time 0.021 seconds

Chicken Breeding with Local Breeds in China - A Review

  • Jiang, X.;Groen, A.F.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.10
    • /
    • pp.1482-1498
    • /
    • 2000
  • This paper reviews the meat-type chicken breeding with local breeds in China. The quality chickens are defined as purebred final products of local breeds, and semi-quality chickens as crossbreds of local breeds with specialized broiler (sire or dam) lines from western breeding organizations. The present status of the chicken production and the market in China, in comparison with the western countries, is reviewed, indicating that there is large market demand for (semi-) quality chickens in the present and future China. Breeding for (semi-) quality chickens emphasizes the sensory quality of chicken meat. The present status of breeding for (semi-) quality chickens with the local breeds is illustrated, including breeding goals and the existing breeding programs. The potential role of local breeds in breeding programs in China is discussed in relation to both providing higher quality (than commercial hybrid broilers) of chicken meat for the local market and meeting the objectives of genetic resource conservation. Besides, further research topics on breeding for (semi-) quality chickens are suggested.

Polymorphism of Ghrelin Gene in Twelve Chinese Indigenous Chicken Breeds and Its Relationship with Chicken Growth Traits

  • Li, C.C.;Li, K.;Li, J.;Mo, D.L.;Xu, R.F.;Chen, G.H.;Qiangba, Y.Z.;Ji, S.L.;Tang, X.H.;Fan, B.;Zhu, M.J.;Xiong, T.A.;Guan, X.;Liu, Bang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.2
    • /
    • pp.153-159
    • /
    • 2006
  • A 2,656 bp fragment of chicken ghrelin gene was cloned and SNPs were detected by PCR-RFLP and Allele Specific PCR (ASP) in 12 Chinese indigenous chicken breeds and a commercial chicken population. The results showed that there were 23 base variations and an amino acid change ($Gln{\rightarrow}Arg$) in cloned chicken ghrelin gene. Three SNPs were confirmed in 13 populations and associations between this gene and growth traits of Tibetan chicken (TC) and Recessive White chicken (RW) were investigated. The results of haplotype analysis revealed that 26 haplotype genotypes were composed of eight haplotypes. The results of $x^2$ tests indicated that there were significant differences between genotypes or haplotype genotype frequencies in some of the breeds or sexes at 0.05 or 0.01 levels. The results of ANOVA revealed that there were significant differences between genotypes or haplotype genotypes on some growth traits of TC and RW chicken breeds at 0.05 or 0.01 levels. Multiple comparisons showed that there were significant associations between genotype CT at site 71 and some growth traits of two chicken breeds and between genotype AG at site 1,215 and body weight at 16 wk of two chicken breeds, and there was a significant association between haplotype genotype CAA/CAG and body weight and shank girth at 16 wk of two chicken breeds.

Identification of SNPs in Cellular Retinol Binding Protein 1 and Cellular Retinol Binding Protein 3 Genes and Their Associations with Laying Performance Traits in Erlang Mountainous Chicken

  • Wang, Yan;Xiao, Li-Hua;Zhao, Xiao-Ling;Liu, Yi-Ping;Zhu, Qing
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.8
    • /
    • pp.1075-1081
    • /
    • 2014
  • CRBP1 (cellular retinol binding protein 1) and CRBP3 (cellular retinol binding protein 3), are important components of the retinoid signaling pathway and take part in vitamin A absorption, transport and metabolism. Based on the role of vitamin A in chicken laying performance, we investigated the polymorphism of CRBP1 and CRBP3 genes in 349 chickens using single strand conformation polymorphism and DNA sequencing methods. Only one polymorphism was identified in the third intron of CRBP1, two polymorphisms were detected in CRBP3; they were located in the second intron and the third intron respectively. The association studies between these three SNPs and laying performance traits were performed in Erlang mountainous chicken. Notably, the SNP g.14604G>T of CRBP1 was shown to be significantly associated with body weight at first egg (BWFE), age at first egg (AFE), weight at first egg (WFE) and total number of eggs with 300 age (EN). The CRBP3 polymorphism g.934C>G was associated with AFE, and the g.1324A>G was associated with AFE and BWFE, but none of these polymorphisms were associated with egg quality traits. Haplotype combinations constructed on these two SNPs of CRBP3 gene were associated with BWFE and AFE. In particular, diplotype H2H2 had positive effect on AFE, BWFE, EN, and average egg-laying interval. We herein describe for the first time basic research on the polymorphism of chicken CRBP1 and CRBP3 genes that is predictive of genetic potential for laying performance in chicken.

Association between Polymorphisms of Lipoprotein Lipase Gene and Chicken Fat Deposition

  • Liu, Rui;Wang, Yachun;Sun, Dongxiao;Yu, Ying;Zhang, Yuan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.10
    • /
    • pp.1409-1414
    • /
    • 2006
  • The objective of this study was to screen single nucleotide polymorphisms (SNPs) of the chicken lipoprotein lipase gene (LPL), using 545 F1 hybrids developed from $4{\times}4$ diallel crossing of four chicken breeds, and to analyze the associations between polymorphisms of the LPL and chicken fat deposition traits. PCR-SSCP was used to detect SNPs in LPL. Fifteen sets of primers were designed to amplify DNA fragments covering the 5'flanking and coding regions of LPL. It showed that there existed 5 polymorphic loci in the 5'flanking region and coding region, respectively. Association analysis was carried out between 10 polymorphic loci and intermuscular fat width, abdominal fat weight, and thickness of subcutaneous fat using ANCOVA, respectively. The results indicated that, in the 5'flanking region, the loci d and e significantly affected thickness of subcutaneous fat (p<0.05), abdominal fat weight (p<0.01) and subcutaneous fat (p<0.05), while in the coding region, synonymous mutation in exon 8 was significantly associated with intermuscular fat width (p<0.05), however, the non-synonymous mutations in exon 7 and exon 9 did not show statistically significant effects on fat deposition traits in this study.

Genetic diversity of Saudi native chicken breeds segregating for naked neck and frizzle genes using microsatellite markers

  • Fathi, Moataz;El-Zarei, Mohamed;Al-Homidan, Ibrahim;Abou-Emera, Osama
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.12
    • /
    • pp.1871-1880
    • /
    • 2018
  • Objective: Recently, there has been an increasing interest in conservation of native genetic resources of chicken on a worldwide basis. Most of the native chicken breeds are threatened by extinction or crossing with ecotypes. Methods: Six Saudi native chicken breeds including black naked neck, brown frizzled, black, black barred, brown and gray were used in the current study. The aim of the current study was to evaluate genetic diversity, relationship and population structure of Saudi native chicken breeds based on 20 microsatellite markers. Results: A total of 172 alleles were detected in Saudi native chicken breeds across all 20 microsatellite loci. The mean number of alleles per breed ranged from 4.35 in gray breed to 5.45 in normally feathered black with an average of 8.6 alleles. All breeds were characterized by a high degree of genetic diversity, with the lowest heterozygosity found in the brown breed (72%) and the greatest in the frizzled and black barred populations (78%). Higher estimate of expected heterozygosity (0.68) was found in both black breeds (normal and naked neck) compared to the other chicken populations. All studied breeds showed no inbreeding within breed (negative inbreeding coefficient [$F_{IS}$]). The phylogenetic relationships of chickens were examined using neighbor-joining trees constructed at the level of breeds and individual samples. The neighbor-joining tree constructed at breed level revealed three main clusters, with naked neck and gray breeds in one cluster, and brown and frizzled in the second cluster leaving black barred in a separate one. Conclusion: It could be concluded that the genetic information derived from the current study can be used as a guide for genetic improvement and conservation in further breeding programs. Our findings indicate that the Saudi native chicken populations have a rich genetic diversity and show a high polymorphism.

Expression Analysis of the Mx Gene and Its Genome Structure in Chickens

  • Yin, C.G.;Du, L.X.;Li, S.G.;Zhao, G.P.;Zhang, J.;Wei, C.H.;Xu, L.Y.;Liu, T.;Li, H.B.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.7
    • /
    • pp.855-862
    • /
    • 2010
  • Among the known interferon-induced antiviral mechanisms, the Mx pathway is one of the most powerful pathways. The Mx protein has direct antiviral activity and inhibits a wide range of viruses by blocking an early stage of the viral replication cycle. Cloning, characterization, and expression of Mx in vivo and in vitro have been conducted. The chicken Mx gene spans 21 kb and is made up of 14 exons and 13 introns, of which the promoter region was analyzed. The real-time PCR results showed that Mx expression was increased in chicken embryo fibroblasts (CEF) after 12- and 24-h induction with polyI: C. Induction of Mx expression by poly I: C in vivo revealed tissue-specific patterns among the chicken tissues tested. A trace expression of Mx was detected in healthy chicken liver tissues from adult chickens without inducement; the expression levels in the liver, heart, and gizzard were higher than in the muscle and kidney. This is the first report to demonstrate the expression of a glutathione-S-transferase-tagged-Mx fusion protein of 75 KDa, as well as the biological activity tested by SDS-PAGE and western blotting.

Cloning of Chicken Microsomal Glutathione S-transferase 1 Gene (MGST1) and Identification of Its Different Splice Variants

  • Wang, X.-T.;Zhang, H.;Zhao, C.-J.;Li, J.-Y.;Xu, G.-Y.;Lian, L.-S.;Wu, C.-X.;Deng, Xuemei
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.2
    • /
    • pp.155-161
    • /
    • 2009
  • Mammal microsomal glutathione transferase 1 (MGST1) can conjugate many toxic or carcinogenic substances and depress oxidative stress. In this study, Chicken MGST1 and its variants were cloned for the first time and were composed of 956 or 944 nucleotides. The 12 nt deletion in the exon 2 did not alter the GT-AG rule and the ORFs for the two MGST1 variants were the same, which both comprised 465 nucletides and encoded a peptide with 155 amino acids. It was found that the two different splice variants identified using RT-PCR expressed in all three organs investigated of Dwarf Brown Chicken, namely liver, spleen and shell gland. Moreover, the expression level of MGST1 mRNA in the liver of Dwarf Brown chickens was the highest (p<0.01), and there were no significant differences between the spleen and the shell gland. These results provide a base for studying the biological function of Chicken MGST1.

Cloning and Characterization of Liver cDNAs That Are Differentially Expressed between Chicken Hybrids and Their Parents

  • Sun, Dong-Xiao;Wang, Dong;Yu, Ying;Zhang, Yuan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.12
    • /
    • pp.1684-1690
    • /
    • 2005
  • Using mRNA differential display technique, we investigated differential gene expression in hybrids relative to their parents in a diallel cross involving four chicken breeds in order to provide an insight into the molecular basis of heterosis in chicken. The results indicated that there was extensive differential gene expression between chicken F1 hybrids and their parents which was classified into four kinds of patterns as following: (1) bands only detected in hybrid F1; (2) bands only absent in hybrid F1; (3) bands only detected in parent P1 or P2; (4) bands absent in parent P1 or P2. Forty-two differentially expressed cDNAs were cloned and sequenced, and their expression patterns were confirmed by Reverse-Northern dot blot. Sequence analysis and database searches revealed that genes showed differential expression between hybrid and parents were regulatory and functional genes involved in metabolism, mRNA splicing, transcriptional regulation, cell cycles and protein modification. These results indicated that hybridization between two parents can cause changes in expression of a variety of genes. In conclusion, that the altered pattern of gene expression in hybrids may be responsible for heterosis in chickens.

Genetic Analysis of Haimen Chicken Populations Using Decamer Random Markers

  • Olowofeso, O.;Wang, J.Y.;Zhang, P.;Dai, G.J.;Sheng, H.W.;Wu, R.;Wu, X.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.11
    • /
    • pp.1519-1523
    • /
    • 2006
  • Through a screening and selection approach method, decamer random markers were used in a technique called random amplified polymorphic DNA (RAPD) assay with 252 genomic DNAs isolated from four major Haimen chicken populations: Rugao (62), Jiangchun (62), Wan-Nan (63) and Cshiqishi (65). A total of 3-score decamer random primers (S241-S260, S1081-S1100 and S1341-S1360) were employed in the preliminary RAPD-polymerase chain reaction (RAPD-PCR) assay with 50 random template DNA samples from all the populations. Four (6.67%) of the primers that produced obvious polymorphic patterns, interpretable and reproducible bands were selected and used with both the individual DNAs from each population and with pooled DNA samples of the four populations in subsequent analyses. The selected primers produced a total of 131 fragments with molecular size ranging from 835 to 4,972 base pairs (bp) when used with the individual DNAs; 105 (80.15%) of these fragments were polymorphic. With the pooled DNAs, 47 stable and characteristic bands with molecular size ranging from 840 to 4,983 bp, of which 23 (48.94%) polymorphic, were also generated. The band-sharing coefficient (BSC) calculated for the individuals in the population and among populations of bulked samples was between 0.8247 (Rugao) and 0.9500 (Cshiqishi); for pairwise populations, it was between 0.7273 (Rugao vs. Wan-Nan) and 0.9367 (Jiangchun vs. Cshiqishi) chicken populations. Using the BSC for individual and pairwise populations, the Nei's standard genetic distances between the chicken populations were determined and ranged from 0.0043 (Jiangchun vs. Cshiqishi) to 0.1375 (Rugao vs. Cshiqishi). The reconstructed dendrogram linked the Jiangchun and Cshiqishi chickens as closely related populations, followed by Wan-Nan, while the Rugao was the most genetically distant among the populations.

Performance differences of Rhode Island Red, Bashang Long-tail Chicken, and their reciprocal crossbreds under natural cold stress

  • Xie, Shanshan;Yang, Xukai;Gao, Yahui;Jiao, Wenjie;Li, Xinghua;Li, Yajie;Ning, Zhonghua
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.10
    • /
    • pp.1507-1514
    • /
    • 2017
  • Objective: The Bashang Long-tail chicken (BS), an indigenous Chinese breed, is considered cold tolerant. We selected BS, the Rhode Island Red (RIR), and their reciprocal crossbreds for the present study. The objectives were: i) to validate whether BS is cold tolerant and whether egg production and cold tolerance of crossbreds could be improved; and ii) to determine the physiological characteristics that underlie cold tolerance and favorable egg production performance in cold environments. Methods: A total of 916 chickens were reared in warm and natural cold environments (daily mean ambient temperature varied from $7.4^{\circ}C$ to $26.5^{\circ}C$ in the warm environment and from $-17.5^{\circ}C$ to $27.0^{\circ}C$ in the cold environment). To investigate their adaptability to the cold environment, the egg production performance and body weight were monitored and compared between breeds and environments. The cloacal temperature and serum biochemical parameters were monitored to reveal the physiological characteristics underlie cold tolerance and favorable egg production performance in the cold environment. Results: The warm environment experiment showed that RIR had the highest egg production performance, and that the reciprocal crossbreds had a higher egg production performance than BS. While in the cold environment RIR had the lowest egg production performance, and the reciprocal crossbreds had a higher egg production performance than BS. In the cold environment BS and reciprocal crossbreds had higher triiodothyronine, tetraiodothyronine levels than RIR. At 35 and 39 wk of age, when the ambient temperature was extremely low (varied from $-20^{\circ}C$ to $0^{\circ}C$), serum glucose, follicle-stimulating hormone, luteinizing hormone, estradiol of BS and crossbreds were higher than RIR. Conclusion: Bashang Long-tail chicken has a favorable cold tolerance ability. Crossbreeding with RIR and BS is an effective way to develop cold tolerant chickens with improved egg production performance.