• Title/Summary/Keyword: chicken breast sausages

Search Result 15, Processing Time 0.022 seconds

Evaluation of physicochemical and textural properties of chicken breast sausages containing various combinations of salt and sodium tripolyphosphate

  • Choi, Ji Seon;Chin, Koo Bok
    • Journal of Animal Science and Technology
    • /
    • v.62 no.4
    • /
    • pp.577-586
    • /
    • 2020
  • This study was to investigate the effect of salt alone or in combination with phosphate on physicochemical and textural properties, and chemical interactions of low-fat model sausages. pH, color, expressible moisture (EM), cooking loss (CL), proximate analysis, textural profile analysis and low-vacuum scanning electron microscopy were performed. As salt content increased, color tended to decrease, as did EM and CL parameters, indicating that the ability to retain moisture was improved with increased salt levels (p < 0.05). In addition, textural hardness, gumminess and chewiness all increased with increasing salt (p < 0.05). Sausages with 0.3% salt showed the lowest cohesiveness compared to those with salt levels higher than 0.3% (p < 0.05). Addition of sodium tripolyphosphate (STPP) increased pH of sausages. Increasing salt and STPP did not affect lightness (p > 0.05), but did increase redness and yellowness (p < 0.05). The moisture content was higher when the salt and STPP contents were increased (p < 0.05), but no differences in the fat and protein contents (%) were observed (p > 0.05). EM and CL tended to decrease with increasing salt and STPP. In textural properties, the combination of 1.8% salt and 0.3% STPP was the best among other treatment (p < 0.05). Surface microstructure showed a flat and dense structure with increasing salt and STPP. Since the addition of salt and phosphate improved the functionality, textural and physicochemical properties of meat products in this study, meat products will need to be developed in line with consumer's preference.

Effect of Chicken Skin and Pork Backfat on Quality of Dakgalbi-Taste Chicken Sausage (닭갈비맛 계육 소시지의 닭 껍질과 돼지 등지방의 첨가 효과)

  • Song, Yeong Rae;Kim, Dong Soo;Muhlisin, Muhlisin;Seo, Tae Su;Jang, Aera;Pak, Jae In;Lee, Sung Ki
    • Korean Journal of Poultry Science
    • /
    • v.41 no.3
    • /
    • pp.181-189
    • /
    • 2014
  • This study was conducted to investigate the effect of chicken skin and pork backfat on quality of Dakgalbi-taste chicken sausage as fat sources. The sausages were manufactured with 100% chicken breast without fat sources, 85% chicken breast meat with 15% chicken skin or 85% chicken breast meat with 15% pork backfat, respectively. Batters for production of chicken sausage were mixed with 5% Dakgalbi sauce and 4.92% ingredients (meat and lipid basis) for 20 min and then stuffed into casing. All cooked sausages were vacuum-packaged and stored at $4^{\circ}C$ for 14 days. Moisture and crude protein contents were higher in the control, and crude lipid content was higher in chicken sausage with pork backfat (p<0.05). Unsaturated fatty acids content and monounsaturated fatty acids/saturated fatty acids ratio of sausage with pork backfat were lower than those of control and sausage with chicken skin (p<0.05), which were influenced by fatty acids compositions of fat sources. The chicken sausage with pork backfat showed a lower hardness and chewiness, and higher springiness measured by food texture analyzer. The sausage with pork backfat had a high level of water holding capacity (WHC) during storage (p<0.05). In conclusion, Dakgalbi-taste chicken sausage containing chicken skin had higher unsaturated fatty acid compositions, but showed lower textural quality compared with that containing pork backfat.

Effects of the Addition of Cauliflower Powder on Low-Fat Chicken Breast Sausage Quality (콜리플라워 분말의 첨가가 저지방 닭가슴살 소시지 품질에 미치는 영향)

  • Minkyung Woo;Seonmin Lee;Seul-Ki-Chan Jeong;Hayeon Jeon;Seokhee Han;Soeun Kim;Samooel Jung;Kyung Jo
    • Korean Journal of Poultry Science
    • /
    • v.51 no.2
    • /
    • pp.47-56
    • /
    • 2024
  • This study investigated the quality characteristics of low-fat chicken breast sausage with cauliflower powder to replace the fat. Cauliflower was freeze-dried and then ground into powder form. Sausagebatter was prepared separately according to the amount of fat and cauliflower powder added. 1) Control, sausage with 20% of pork fat, 2) LF, sausage with 3% of pork fat, 3) C0.5, sausage with 3% of pork fat and 0.5% of cauliflower powder, 4) C1.0, sausage with 3% of pork fat and 1.0% cauliflower powder. The prepared sausage batter was heated to a final internal temperature of 75℃. The pH of sausage batter increased with the addition of cauliflower powder (P<0.05). Storage loss and cooking loss increased in low-fat samples but decreased as the amount of cauliflower powder added increased (P<0.05). The hardness measured on the 30th day of storage decreased in LF but increased with the content of cauliflower powder (P<0.05). The redness and yellowness of the sausage increased with the addition of cauliflower powder. The malondialdehyde content of chicken breast sausages decreased at C0.5 and C1.0 on the 30th day of storage. The sausages with cauliflower powder received lower scores in sensory evaluation (P<0.05). Therefore, the addition of cauliflower powder to low-fat chicken breast sausage reduced overall sensory acceptability but improved water-holding capacity and oxidative stability.

The Effects of Doenjang (Korean Traditional Fermented Soy Bean Paste) Powder on the Quality and Shelf-Life of Chicken Sausages during Storage (분말된장의 첨가가 닭고기 소시지의 품질 및 저장성에 미치는 영향)

  • Kim, Dong-Soo;Song, Yeong-Rae;Muhlisin, Muhlisin;Seo, Tae-Su;Jang, Aera;Lee, Sung-Ki;Pak, Jae-In
    • Korean Journal of Poultry Science
    • /
    • v.40 no.4
    • /
    • pp.315-325
    • /
    • 2013
  • In this study, the effects of Doenjang powder (DP : Korean traditional fermented soy bean paste) addition on the quality and shelf-life of chicken sausages during storage were evaluated. The chicken sausages were manufactured with 60% of chicken breast meat, 20% of chicken skin and other ingredients. The sausages were divided into four treatments according to DP addition level such as 0, 2, 5 and 8%. The sausages were vacuum packed and stored at a refrigerator ($5^{\circ}C$) for 4 weeks. pH of sausage was in creased with DP addition after 2 weeks storage (p<0.05). The addition of 2% and 5% DP decreased the lipid oxidation (TBARS) value (p<0.05) and addition of 8% DP seemed to promote the protein deterioration (VBN) over the storage (p<0.05). In the instrumental color, the chicken sausages with 5% and 8% DP showed higher redness and lower lightness value than sausage with 0 and 2% DP (p<0.05) over the storage. The hardness and gumminess of chicken sausages added with 5% DP were significantly lower than those of other treatments during the storage (p<0.05). The addition of DP detained the growth of aerobic and anaerobic bacteria counts after 2 week of storage (p<0.05), but no significant difference was found by DP addition level (p>0.05). In conclusion, 5% DP could be used as ingredient of chicken sausage to enhance sensory quality and retard lipid oxidation.

Effect of Seawater on the Technological Properties of Chicken Emulsion Sausage in a Model System

  • Lee, Sol Hee;Choe, Juhui;Kim, Jong-Chan;Kim, Hack Youn
    • Food Science of Animal Resources
    • /
    • v.40 no.3
    • /
    • pp.377-387
    • /
    • 2020
  • The aim of this study was to compare the effect of seawater to that of conventional salt (NaCl) on the technological properties of chicken emulsion sausages in a model system. Chicken sausages were prepared with seawater at three levels (10%, 15%, and 20%) in iced water (10%, 5%, and 0%, respectively) or with iced water (20%) and salt (1.2%). There was no difference in pH values and fat loss from emulsion stability between the two treatments. In general, with an increase in the amount of seawater, the water holding capacity (cooking yield and water loss), protein solubility (total and myofibrillar protein), and viscosity were increased. The addition of 20% seawater induced greater (p<0.05) water holding capacity, protein solubility, and viscosity compared to the control sample treated with salt, which was accompanied by an increase in the level of myosin heavy chain protein of samples with 10% and 20% seawater. Furthermore, addition of at least 15% seawater increased all of the main textural properties except for cohesiveness along with the moisture of sausage, whereas the fat and protein contents were decreased. Based on these results, the addition of ≥15% seawater to chicken breast sausage can induce equivalent or enhanced technological properties to those induced with salt, including water holding capacity, protein solubility, viscosity, and textural properties.