• Title/Summary/Keyword: chicken brain cells

Search Result 17, Processing Time 0.024 seconds

Effects of the Protein Fraction of Panax ginseng on Primary Cultured Chicken Brain Cells and DRG (인삼 단백분획물이 일차배양한 계배의 뇌세포 및 DRG에 미치는 영향)

  • Park, Mi-Jung;Song, Jin-Ho;Kim, Sun-Yeou;Kim, Young-Choong
    • YAKHAK HOEJI
    • /
    • v.34 no.5
    • /
    • pp.365-373
    • /
    • 1990
  • The effects of the protein fraction of Panax ginseng on primary cultured chicken embryonic brain cells and DRG cultured with a deficient medium were studied. The protein fraction was further fractionated into four groups according to the molecular weight; larger than 10,000 dalton(fraction A), between 5,000 and 10,000 daltons(fraction B), between 1,000 and 5,000 daltons(fraction C), between 500 and 1,000 daltons(fraction D). All four protein fractions at the concentration of $100\;{\mu}g/ml$ significantly increased the number of the brain cells which promoted the neurite outgrowth. The activity of PDHC in the brain cells was elevated significantly by the protein fraction B at the concentration of $100\;{\mu}g/ml$. It was noted that $100\;{\mu}g/ml$ protein fraction C and D significantly enhanced the synthesis of protein in the brain cells. At the concentration of $100\;{\mu}g/ml$, the protein fraction B enhanced RNA synthesis and the protein fraction A significantly enhanced DNA synthesis in the brain cells. The protein fractions B, C, and D significantly promoted the neurite outgrowth of DRG at the concentration of $100\;{\mu}g/ml$.

  • PDF

한국 재래닭의 발생.발육단계별 telomere와 telomerase activity 분석

  • 정길선;조은정;최철환;손시환
    • Proceedings of the Korea Society of Poultry Science Conference
    • /
    • 2004.11a
    • /
    • pp.16-18
    • /
    • 2004
  • This study was carried out to analyze the amount of telomeres and telomerase activity of several chicken cells. Telomere quantity and telomerase activity were analyzed during organ development, growth and aging in embryonic and adults chicken. Analyzed cells were whole embryos and the cells from brain, heart, liver, kidney, lymphocytes and germinal tissues in Korean Native Chicken. The amount of telomeric DNA was analyzed by quantitative fluorescence in situ hybridization (Q-FISH) techniques using a chicken telomere repeat probe. Telomerase activity was performed by Telomeric Repeat Amplification Protocol (TRAP) assay. In results, telomerase activity was highly detectable in early embryonic cells, germinal cells and kidney cells. Whereas the cells from brain, heart, and liver had gradually down-regulated pattern of telomerase activity. Analyzing the telomere quantities on chicken cells, the amount of telomeric DNA of most chicken cells gradually decreased as growth. From these results, the amount of telomeric DNA was directly affected by telomerase activity. Consequently the telomere quantity and telomerase activity are closely relate to cell differentiation and tissue specificity during developmental and growing stages.

  • PDF

Telomeres Distribution and Telomerase Activity During Chick Embryonic and Developmental Stages

  • Cho, E.J.;Kang, M.Y.;Jung, G.S.;Sohn, S.H.
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2003.10a
    • /
    • pp.111-111
    • /
    • 2003
  • Telomeres are the end of chromosomes and consist of a tandem repeat sequence of (TTAGGG)n and associated proteins. Telomerase is a ribonucleoprotein which act as a template for the synthesis of telomeric DNA. Telomeres are essential for chromosome stability and are related with cell senescence, apoptosis and cancer. Even though telomeres and telomerase have been studied extensively, very little is known about telomere dynamics in embryonic cells. This study was carried out to analyze the telomeres distribution and telomerase activity of chicken cells during embryonic and developmental stages. The target cells for analysing were sperms, ovulated ova, early embryonic cells and the cells from brain, heart, liver, kidney and germinal tissue in fetus. Telomeres distribution on target cells was analyzed by Q-FISH (Quantitation-Fluorescence in situ Hybridization) techniques using a chicken telomere repeat probe. Telomerase activity was performed by TRAP assay (Telomeric repeat Amplification Protocol) with target DNA. In results, the telomeres of chicken were found at the ends of all chromosomes. In addition, chicken had interstitial telomeres on chromosomes 1, 2 and 3. Telomerase activity was highly detectable in early embryonic cells, germinal tissues and kidney cells. Whereas telomerase activity was gradually down-regulated when the organs, including brain, heart, and liver, were developed from embryos. In the distribution of telomeric DNA on the embryonic and developmental stages, most of the cells was gradually decreased in telomere quantity during ontogenesis.

  • PDF

Analysis of Telomere Length and Telomerase Activity of Tissues in Korean Native Chicken (한국 재래닭의 주령별 각 조직의 텔로미어 함량과 텔로머레이스 활성도 분석)

  • Jung G.S.;Cho E.J.;Choi D.S.;Lee M.J.;Park C.;Jeon I.S.;Sohn S.H.
    • Korean Journal of Poultry Science
    • /
    • v.33 no.2
    • /
    • pp.97-103
    • /
    • 2006
  • Telomeres are essential for chromosome stability and are related with cell senescence, apoptosis and cancer. Even though telomere length and telomerase activity have been studied extensively, very little is known to analyze the telomere dynamics in chicken cells. This study was carried out to analyze the telomere distribution and telomerase activity of Korean Native Chicken cells along with aging. The cells were collected from brain, heart, liver, kidney and germinal tissues during physiological stages. Telomere distribution was analyzed by Quantitative-Fluorescence in situ Hybridization (Q-FISH) techniques using the chicken telomeric DNA probe. Telomerase activity was performed by Telomeric Repeat Amplification Protocol (TRAP) assay. In results, the telomeres of chicken were found at the ends of all chromosomes with the interstitial telomeres on chromosomes 1, 2 and 3. The amount of telomeres on chicken cells was decreased along with aging in most tissues. Furthermore, the telomere quantity was significantly different among tissues. The relative amount of telomeres in proliferous cells such as testis cells had much more than those of liver, brain, heart, blood and kidney cells. The telomerase activity was down-regulated in cells of brain, heart and liver tissues. Whereas gonadal cells showed a constitutive activity of telomerase during all stage of life. In conclusions, the telomere quantity and telomerase activity in chicken are closely relate to cell proliferation and tissue specificity during developmental stages and aging. There is also closely correlated between the amounts of telomeric DNA and telomerase activity in chicken tissues.

Longevity of Toxocara cati Larvae and Pathology in Tissues of Experimentally Infected Chickens

  • Oryan, Ahmad;Sadjjadi, Seyyed-Mahmoud;Azizi, Shahrzad
    • Parasites, Hosts and Diseases
    • /
    • v.48 no.1
    • /
    • pp.79-80
    • /
    • 2010
  • This study was conducted to determine the distribution patterns and duration of stay of Toxocara cati larvae in organs of chickens and to investigate chronic phase and potential zoonotic risk of toxocariasis in chickens. Chickens were orally infected with 1,000 embryonated T. cati eggs and necropsied 240 days post-infection. Organs of the chickens were examined at gross and microscopic levels; tissues were digested to recover larvae. Peribronchiolitis with infiltration of lymphocytes, and hyperplasia of bronchiolar associated lymphatic tissues (BALT) and goblet cells, were evident in the lungs of infected chickens. There were mild hemorrhages and infiltration of lymphocytes and a few eosinophils in the meninges. Larvae were recovered from 30% of the exposed chickens. Larvae recovery indicated that T. cati larvae stay alive for at least 240 days in the chicken brain. Therefore, chickens may potentially act as a paratenic host in nature and transfer T. cati larvae to other hosts.

Effect of Vitamin E Treatments on The Humoral and Cellular Immune Responses in Mice. - Animal experiment for nursing care of vitamin E-deficient patients- (비타민 E 투여가 마우스의 체액성 및 세포성 면역반응에 미치는 영향 -비타민 E 결핍환자의 간호중재 개발을 위한 동물실험 -)

  • 김금재
    • Journal of Korean Academy of Nursing
    • /
    • v.23 no.4
    • /
    • pp.528-543
    • /
    • 1993
  • Vitamin E, which has its advocates in the treatment of diabetes mellitus. autoimmune disease, cancer and peripheral vascular and thromboembolic disease, has now been alleged to have a powerful antioxident effect and to affect various biological activities such as fertility factor, inhibition of human platelet aggregation and stabilization of biological membranes. The present study was designed to test whether vitamin I(alpha-tocopherol) can : (1) enhance the hemagglutinin response to sheep red blood cells (SRBC), (2) modulate Arthus and delayed type hypersensitivity(DTH) to SRBC and contact hypersensitivity to dinitrofluorobenzene (DNFB). (3) enhance the mitogenic response of murine splenocyte, (4) decrease the recovery of Cryptococcus neoformans from brain, lung, liver, spleen and kidney of infected mice and (5) have an inhibitory or enhancing effect on the induction of active systemic anaphylaxis(ASA) induced by chicken-gamma globulin (CGG) in mice. Mice were given either intramuscular injections of 0.3ml (300mg) of vitamin I before immunization or were infection for 10 consecutive days or were given by vitamin I esophageal intubation, 0.1ml(100mg), for 20 days before sacrifice for the mitogenic response experiments. It was found that vitamin E treated mice showed a significant enhancement in hemagglutinin response, Arthus reaction and DTH to SRBC and contact hypersensitivity to DNFB. There was no significant difference in the mitogenic response to phytohemagglutinin(PHA), but the response to concanavalin A(ConA) or pokeweed mitogem(PWM) was increased in vitamin E-treated mice. Interestingly, the vitamin E administration before C. neoformans infection decreased significantly the recovery of C. neoformans from brain lung, liver, spleen and kidney of the infected mice as compared with that of the control mice, strongly suggesting that vitamin E pretreatment may increase the resistance of mice to the fungal infection. Unexpectedly, vitamin E administration enhanced the production of CGG -induced ASA. Taken together, it can be concluded that vitamin I administration may in-crease the humoral and cellular immune response and resistance. to C. neoformans infection, but enhance the induction of ASA to CGG. Further studies are necessary to clarify the underlying mechanism accounting for these effects.

  • PDF

Expression analysis of ciliary rootlet coiled coil protein mRNA during Xenopus development

  • Rahman, Md. Mahfujur;Kim, In-Shik;Ahn, Dong-Choon;Cho, Ho-Seong;Kim, Won-Il;Kim, Bumseok;Shin, Gee-Wook;Kwon, Jungkee;Akanda, Rashedunnabi;Park, Byung-Yong
    • Korean Journal of Veterinary Research
    • /
    • v.55 no.3
    • /
    • pp.181-184
    • /
    • 2015
  • Ciliary rootlet coiled coil protein (CROCC), the structural component that originates from the basal body at the proximal end of the ciliary rootlet, plays a crucial role in maintaining the cellular integrity of ciliated cells. In the current study, we cloned Xenopus CROCC and performed the expression analysis. The amino acid sequence of Xenopus laevis was related to those of Drosophila, cow, goat, horse, chicken, mouse and human. Reverse transcription polymerase chain reaction analysis revealed that CROCC mRNA encoding a coiled coil protein was present maternally, as well as throughout early development. In situ hybridization indicated that CROCC mRNA occurred in the animal pole of embryo during gastrulation and subsequently in the presumptive neuroectoderm at the end of gastrulation. At tailbud stages, CROCC mRNA expression was localized in the anterior roof plate of the developing brain, pharyngeal epithelium connected to gills, esophagus, olfactory placode, intestine and nephrostomes of the pronephric kidney. Our study suggests that CROCC may be responsible for control of the development of various ciliated organs.