• Title/Summary/Keyword: chemically modified thermoplastic starch(CMPS)

Search Result 2, Processing Time 0.015 seconds

Characteristics of Biodegradable Blends of PBAST and Chemically Modified Thermoplastic Starch (생분해성 PBAST와 변형 열가소성 전분 블렌드의 특성)

  • Shin, Boo-Young
    • Polymer(Korea)
    • /
    • v.35 no.6
    • /
    • pp.580-585
    • /
    • 2011
  • This article aims to enhance the biodegradability and environment-friendliness of petroleum based biodegradable poly(butylene adipate-co-succinate-co-terephthalate)(PBAST) by blending chemically modified thermoplastic starch(CMPS). CMPS is a kind of bio-based biodegradable resin which is manufactured by reacting starch with maleic anhydride(MA) in the presence of a plasticizer and a free radical initiator. The characteristic properties of PBAST/CMPS blends were investigated by observing their morphology, thermal, mechanical properties, and biodegradability. The good interfacial adhesion between the phases examined by SEM revealed that PBAST/CMPS blends were compatible blends. The tensile strength and elongation decreased with increasing CMPS content, while modulus increased. The biodegradability of the blends was much higher than that of pristine PBAST and increased with increasing CMPS contents.

Morphology, Thermal and Mechanical Properties of Poly(lactic acid)/Poly(butylene adipate-co-terephthalate)/CMPS Blends (Poly(lactic acid)/Poly(butylene adipate-co-terephthalate)/CMPS 블렌드의 형태학, 열적 및 기계적 특성)

  • Kang, Kyoung-Soo;Kim, Bong-Shik;Jang, Woo-Yeul;Shin, Boo-Young
    • Polymer(Korea)
    • /
    • v.33 no.2
    • /
    • pp.164-168
    • /
    • 2009
  • The effects of chemically modified thermoplastic starch (CMPS) on the morphology, thermal and mechanical properties of the blends of poly (lactic acid)(PLA) and poly(butylene adipate-co-terephthalate)(PBAT) were studied. Blends of PLA/PBAT with the CMPS contents of 10, 20 and 30 wt% on the basis of PLA/PBAT weight were prepared by a twin screw extruder. The morphology, thermal and mechanical properties of the blends were examined by using scanning electron microscope (SEM), differential scanning calorimeter (DSC) and a tensile tester. The DSC study revealed that PLA/PBAT blends are thermodynamically immiscible, while the compatibility was much improved by addition of the CMPS.