• Title/Summary/Keyword: chemical-based agent

Search Result 348, Processing Time 0.035 seconds

Development of Near-Critical Water Reaction System for Utilization of Lignin as Chemical Resources

  • Eom, Hee-Jun;Hong, Yoon-Ki;Park, Young-Moo;Chung, Sang-Ho;Lee, Kwan-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.251.2-251.2
    • /
    • 2010
  • Plant biomass has been proposed to be an alternative source for petroleum-based chemical compounds. Especially, phenolic chemical compounds can be obtained from lignin by chemical depolymerization processes because lignin consists of complex aromatic polymer such as trans-p-coumaryl, coniferyl and sinapyl alcohols, etc. Phenolic chemical compounds from lignin were usually produced in super critical water. However, we applied Near-critical water (NCW) system because NCW is known as a good solvent for lignin depolymerization. Organic matter like lignin can be solved in NCW system and the system has a unique acid-base property without conventional non-eco-friendly chemicals such as sulfuric acid and sodium hydroxide. In this work, we tried to optimize the NCW depolymerization system by adjusting the processing variables such as reaction time, temperature and pressure. Moreover, the amount of additional phenol was optimized by changing the molar ratio between water and phenol. Phenol was used as capping agent to prevent re-polymerization of active fragment such as formaldehyde. Alkali-lignin was used as a starting material and characterized by a Solid State 13C-NMR, FT-IR and EA (Elemental Analysis). GC-MS analysis confirmed that o-cresol, p-cresol, anisole and 4-hydroxyphathalic acid were the main product and they were quantitatively analyzed by HPLC.

  • PDF

Synthesis of Yttria Stabilized Zirconia by Sol-gel Precipitation Using PEG and PVA as Stabilizing Agent

  • Bramhe, Sachin N.;Lee, Young Pil;Nguyen, Tuan Dung;Kim, Taik-Nam
    • Korean Journal of Materials Research
    • /
    • v.23 no.8
    • /
    • pp.441-446
    • /
    • 2013
  • There is increasing interest in zirconia as a dental material due to its aesthetics, as well as the exceptionally high fracture toughness and high strength that are on offer when it is alloyed with certain oxides like yttria. In recent years, many solution based chemical synthesis methods have been reported for synthesis of zirconia, of which the sol-gel method is considered to be best. Here, we synthesize zirconia by a sol gel assisted precipitation method using either PEG or PVA as a stabilizing agent. Zirconia sol is first synthesized using the hydrothermal method. We used NaOH as the precipitating agent in this method because it is easy to remove from the final solution. Zirconium and yttrium salts are used as precursors and PEG or PVA are used as stabilizers to separate the metal ions. The resulting amorphous zirconia powder is calcined at $900^{\circ}C$ for 2 h to get crystallized zirconia. XRD analysis confirmed the partially stabilized zirconia synthesis in all the synthesized powders. SEM was taken to check the morphology of the powder synthesized using either PEG or PVA as a stabilizing agent and finally the transparency was calculated. The results confirmed that the powder synthesized with 10 % PVA as the stabilizing agent had highest percentage of transparency among all the synthesized powder.

Surface Properties of Color Concrete Using Acid Stained Agent (표면 착색용 산화제를 사용한 컬러 콘크리트의 표면 특성)

  • Kim, Jin-Man;Jeong, Ji-Yong;Park, Hyo-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.3
    • /
    • pp.265-272
    • /
    • 2011
  • Even though concrete is the most important material for building structures, its intrinsic gray color degrades urban esthetics. In order to improve this problem, coloring methods of mixing pigment in concrete batch and painting the surface of concrete surface have been tried. However, applications of the coloring methods in construction field are difficult due to high cost and low durability. Recently, acid stain agent is emerging as a new coloring method for concrete. It is able to apply a remarkably thin colored layer on a concrete surface from chemical reaction between acid and alkaline solutions. This study has examined the changes and variations of the surface layer of mortar specimen from chemical reaction of acid stained agents. The colors were changed into natural irregular stains according to aging. After the staining, no shape change was found from visible inspections. Microstructure of the colored surface applied with acid stained agent was much rougher than that of original mortar. When the colored layer was compared to original surface, crystals of hydrate such as $Ca(OH)_2$ and C-S-H gel were observed. Surface hardness was same or slightly higher in the colored layer. The value of pH was reduced by approximately 10%, weight contents of elements such as Ca, Si, and Al were low. In the chemical composition of the colored layer, the non-cement based elements of Mn, Cr, and Cu increased. Also, Fe and alkali elements of K and Na increased.

Synthesis and Characterization of Propylene Glycol based Polyol and Urethane modified Epoxy Monomer for Flexibility (Flexibility 도입을 위한 Propylene glycol 기반 폴리올, 우레탄 변성 에폭시 합성 및 특성 분석)

  • Jeon, Jaehee;Hwang, Chiwon;back, Jong-ho;Lim, Choongsun;Seo, Bongkuk;Yu, Youngchang;Lee, Wonjoo
    • Journal of Adhesion and Interface
    • /
    • v.22 no.1
    • /
    • pp.8-15
    • /
    • 2021
  • In this study, a polyol was prepared using Jeffamine D-400 as a propylene glycol-based diamine to impart flexibility to the urethane-modified epoxy, and a urethane-modified epoxy was synthesized using the polyol. Urethane-modified epoxy synthesized with existing Bisphenol A diglycidyl ether (BADGE) epoxy, a curing agent, and a curing accelerator are mixed to prepare an epoxy adhesive, and shear strength is measured by measuring adhesion strength. As a result, shear strength and shear elongation tended to increase. These results are due to the high crosslinking density. It is believed that it can be applied to structural adhesives that are restricted in use.

Properties of Compressive Strength of Mortar Mixed with WCP for Soil Pavement (폐콘크리트분말 혼합 흙도로 포장용 모르타르의 압축강도 특성)

  • Moon Han Young;Choi Yun Wang;Song Yong Kyu;Moon Dae Joong;Shin Hwa Cheol;Jung Chul Hee
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.537-540
    • /
    • 2004
  • Recently, for industrial development period, concrete structures in domestics have been increased. They were deteriorated by attack of carbonation, freeze-thaw and corrosion etc. In hence they were demolished and reconstructed, resulted in waste concrete particles. In this paper, waste concrete particles (WCP) by product from different crushing and selecting process were used in soil cement-based pavement in the various recycling. For using WCP in soil cement-based pavement, the Qualities, physical and chemical properties, of WCP should be researched. In the first step, the specified compressive strength of mortar for two types of clay sand soil and clay soil respectively was experimented to be 15 Mpa and then optimum mixing ratio of chemical solidification agent were decided in the range of $1.5\~3.0\%$ in the replacement with cement weight content. In the second step, based on the prior experimental results, recycling possibility of WCP in soil cement-based pavement was studied. In the result of experiment the mixing ratio of WCP were 5, 10, 15 and $20\%$ in the replacement with soil weight and the compressive strength of mortar was somewhat decreased according to the increase of the mixing ratio of WCP.

  • PDF

Surface Resistance of Antistatic Agent Using Lithium-Fluoro Compound and Quaternary Ammonium Salt and Characteristics Evaluation of Antistatic Film (리튬 불소계 화합물과 4차 암모늄염을 사용한 대전방지제의 표면저항 및 대전방지필름의 특성 평가)

  • Soh, Soon-Young;Chun, Yong-Jin;Lee, Jae-Kyeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.4
    • /
    • pp.575-581
    • /
    • 2020
  • A colorless antistatic agent was prepared for use in antistatic films for liquid crystal displays (LCDs) requiring low surface resistance and high transmittance. Among various lithium-fluoro compounds and quaternary ammonium salts, antistatic materials were selected based on their electrical conductivity, and antistatic agents were prepared to measure the surface resistance. As a result, the material with high conductivity showed a relatively low surface resistance, i.e., relatively good antistatic performance. Based on the antistatic materials selected, the formulation ratio for producing the best antistatic agent was established through the experimental design method and the effects of each factor were analyzed. The higher the use of lithium- fluoro compounds as antistatic materials, the higher the ratio of oligomer use with multi-functional groups, and the smaller the surface resistance. The quaternary ammonium salts increased the antistatic performance of the lithium-fluoro compounds, but the effects of the amount used were not relatively large. After manufacturing the antistatic PET film, the properties of the antistatic film showed low surface resistance values (<109 Ω/sq.), high permeability (>92%), low haze (<0.5%), and high whiteness (L>95). In addition, the antistatic film reliability was found to be excellent by showing a stable surface-resistance change rate of less than 10%, even under high temperature and high humidity conditions.

Development of Practical Advanced Oxidation Treatment System for Decontamination of Soil and Groundwater Contaminated with Chlorinated Solvent (TCE, PCE) : Phase I (염소계 화합물(TCE, PCE)로 오염된 토양 및 지하수 처리를 위한 실용적 고도산화처리시스템 개발 (I))

  • Sohn, Seok-Gyu;Lee, Jong-Yeol;Jung, Jae-Sung;Lee, Hong-Kyun;Kong, Sung-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.5
    • /
    • pp.105-114
    • /
    • 2007
  • The most advanced oxidation processes (AOPs) are based on reactivity of strong and non-selective oxidants such as hydroxyl radical (${\cdot}OH$). Decomposition of typical DNAPL chlorinated compounds (TCE, PCE) using various advanced oxidation processes ($UV/Fe^{3+}$-chelating agent/$H_2O_2$ process, $UV/H_2O_2$ process) was approached to develop appropriate methods treating chlorinated compound (TCE, PCE) for further field application. $UV/H_2O_2$ oxidation system was most efficient for degrading TCE and PCE at neutral pH and the system could remove 99.92% of TCE after 150 min reaction time at pH 6($[H_2O_2]$ = 147 mM, UVdose = 17.4 kwh/L) and degrade 99.99% of PCE within 120 min ($[H_2O_2]$ = 29.4 mM, UVdose = 52.2 kwh/L). Whereas, $UV/Fe^{3+}$-chelating agent/$H_2O_2$ system removed TCE and PCE ca. > 90% (UVdose = 34.8 kwh/L, $[Fe^{3+}]$ = 0.1 mM, [Oxalate] = 0.6 mM, $[H_2O_2]$ = 147 mM) and 98% after 6hrs (UVdose = 17.4 kwh/L, $[Fe^{3+}]$ = 0.1 mM, [Oxalate] = 0.6 mM, $[H_2O_2]$ = 29.4 mM), respectively. We improved the reproduction system with addition of UV light to modified Fenton reaction by increasing reduction rate of $Fe^{3+}$ to $Fe^{2+}$. We expect that the system save the treatment time and improve the removal efficiencies. Moreover, we expect the activity of low molecular organic compounds such as acetate or oxalate be effective for maintaining pH condition as neutral. This oxidation system could be an economical, environmental friendly, and practical treatment process since the organic compounds and iron minerals exist in nature soil conditions.

Synthesis of Monodisperse ZnO Nanoparticles Using Semi-batch Reactor and Effects of HPC Affecting Particle Size and Particle Size Distribution (반회분식 반응을 이용한 단분산 ZnO 나노 입자의 제조 및 입자의 크기와 입도 분포에 영향을 미치는 HPC의 작용)

  • Rho, Seung Yun;Kim, Ki Do;Song, Gun Yong;Kim, Hee Taik
    • Applied Chemistry for Engineering
    • /
    • v.17 no.3
    • /
    • pp.274-279
    • /
    • 2006
  • To synthesize ZnO colloidal solution by a sol-gel process, zinc acetate ($C_{4}H_{6}O_{4}Zn{\cdot}2H_{2}O{\cdot}0.2\;mol$) and lithium hydroxide ($LiOH{\cdot}H_{2}O{\cdot}0.14\;mol$) in the ethanol were added to the solution containing a dispersing agent, hydroxypropyl cellulose (HPC). The nanosize and physical shape of the synthesized ZnO particles were determined by HPC acting as the dispersing agent. Nanosized ZnO particles were also obtained by a precipitation method based on zinc-2-ethylhexagonate. The precipitates were characterized by DLS, XRD, FE-SEM, and UV-vis. As the results, the ZnO colloids tend to self-assemble into a well-ordered hexagonal close-packed structure. The ZnO nanoparticles have an average diameter of nearly 40 nm with a narrow size distribution.

An Evaluation of a super-absorbent polymer as the Nucleating Agent for a Capsule-type Ice Storage System (고흡수성고분자가 조핵제로 첨가된 빙축열용 축열재 개발)

  • Choi, Hyung-Joon;Hong, Seong-Ahn;Park, Won-Hoon
    • Solar Energy
    • /
    • v.10 no.2
    • /
    • pp.28-37
    • /
    • 1990
  • A study was conducted to investigate the feasibility of using a super-absorbent polymer made from a acrylic acid copolymer for a capsule-type ice storage system. In a simple pyrex-tube test, 25% of distilled water samples tested turned out not be frozen at all at $-12^{\circ}C$ and the average supercooling of the samples frozen was $9.8^{\circ}C$. With the addition of 0.5wt% super-absorbent polymer, however, the supercooling of the distilled water was dramatically reduced and more than 35% of samples tested did not show any supercooling. The heat transfer characteristics of a capsule-type ice storage unit was also investigated with a distilled water as the phase-change material. With the addition of 0.5wt% polymer, the supercooling of water was not observed at all and thus an overall heat transfer was enhanced. Based on these results, it was concluded that a super-absorbent polymer is a potential candidate as the nucleating agent for an ice-storage system.

  • PDF

A Study on Recycle of Abrasive Particles in One-used Chemical Mechanical Polishing (CMP) Slurry (산화막 CMP 슬러리의 연마 입자 재활용에 관한 연구)

  • Park, Sung-Woo;Seo, Yong-Jin;Kim, Gi-Uk;Choi, Woon-Sik;Kim, Chul-Bok;Kim, Sang-Yong;Lee, Woo-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05c
    • /
    • pp.145-148
    • /
    • 2003
  • Recently, the recycle of CMP (chemical mechanical polishing) slurries have been positively considered in order to reduce the high COO (cost of ownership) and COC (cost of consumables) in CMP process. Among the composition of slurries (buffer solution, bulk solution, abrasive particle, oxidizer, inhibitor, suspension, antifoaming agent, dispersion agent), the abrasive particles are one of the most important components. Especially, the abrasive particles of slurry are needed in order to achieve a good removal rate. However, the cost of abrasives, is still very high. In this paper, we have collected the silica abrasive powders by filtering after subsequent CMP process for the purpose of abrasive particle recycling. And then, we have studied the possibility of recycle of reused silica abrasive through the analysis of particle size and hardness. Also, we annealed the collected abrasive powders to promote the mechanical strength of reduced abrasion force. Finally, we compared the CMP characteristics between self-developed KOH-based silica abrasive slurry and original slury, As our experimental results, we obtained the comparable removal rate and good planarity with commercial products. Consequently, we can expect the saving of high cost slurry.

  • PDF