• Title/Summary/Keyword: chemical-based agent

Search Result 348, Processing Time 0.027 seconds

Optimization of Wet Reduction Processing for Nanosized Cobalt Powder (나노코발트 분말합성을 위한 액상환원공정의 최적화)

  • Hong, Hyun-Seon;Jung, Hang-Chul;Kim, Geon-Hong;Kang, Lee-Seung;Suk, Han-Gil
    • Journal of Powder Materials
    • /
    • v.20 no.3
    • /
    • pp.191-196
    • /
    • 2013
  • Nano-sized cobalt powder was fabricated by wet chemical reduction method at room temperature. The effects of various experimental variables on the overall properties of fabricated nano-sized cobalt powders have been investigated in detail, and amount of NaOH and reducing agent and dropping speed of reducing agent have been properly selected as experimental variables in the present research. Minitab program which could find optimized conditions was adopted as a statistic analysis. 3D Scatter-Plot and DOE (Design of Experiments) conditions for synthesis of nano-sized cobalt powder were well developed using Box-Behnken DOE method. Based on the results of the DOE process, reproducibility test were performed for nano-sized cobalt powder. Spherical nano-sized cobalt powders with an average size of 70-100 nm were successfully developed and crystalline peaks for the HCP and FCC structure were observed without second phase such as $Co(OH)_2$.

Synthesis and Characteristics of Hyaluronic Acid Bead Crosslinked by 1,3-Butadiene diepoxide (1,3-Butadiene diepoxide에 의해 가교된 히아루론산 비드의 제조 및 특성)

  • Kwon, Ji-Young;Cheong, Seong-Ihl
    • Polymer(Korea)
    • /
    • v.29 no.5
    • /
    • pp.445-450
    • /
    • 2005
  • Hyaluronic acid-based beads were prepared in order to develop a biomedical material for augumentation. Hyaluronic acid was crosslinked by 1,3-butadiene diepoxide in a suspension state maintained by rapid mixing of soybeen oil and hyaluronic acid solution. The particle size, surface area and swelling ratio were measured to investigate the physical properties of the synthesized beads and the bead surface was examined by scanning electron microscopy. The beads were formed in the range of $5-12vol\%$ concentration of crosslinking agent, which showed monodisperse size distribution. Both BET surface area and swelling ratio decreased as the concentration of either hyaluronic acid or crosslinking agent increased, and crosslinking temperature decreased. Bead size could be effectively controlled by mixing speed without affecting other physical property.

Nerve-Agent Selective Chemiresistors Fabricated by Oxime Decorated Polypyrrole Layer on Cellulose Paper (셀룰로오스 종이 상에 Oxime 도입된 polypyrrole 층을 제조한 신경작용제 선택적 화학저항 센서)

  • Changhoon Jeon;Taihwan Ha
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.528-534
    • /
    • 2024
  • In continuous research of detecting highly toxic chemical warfare agents to ensure preparedness for the future battlefield, flexible and wearable sensor platforms with high sensitivity are still demanding. Herein we demonstrate a facile fabrication of polypyrrole-based chemiresistors on cellulose paper for the detection of nerve gas simulants. In order to optimize electrical properties of sensor platform, conducting polymer made of polypyrrole were first synthesized on flexible cellulose paper and interdigitated electrodes were formed thereon. Following confirmation of polypyrrole and/or oxime moiety through FT-IR analyses, electrical characteristics were measured in the various ratio of monomers between simple pyrrole and oxime-modified one. Typically for the optimized chemiresistor(2:8 molar ratio of simple pyrrole and oxime-modified one), eleven species of chemical warfare agents were examined and enhanced conductivity(104~105 order) was observed for three simulants(diethyl cyanophosphonate, diisopropyl fluorophosphonate and diethyl chlorophosphonate), which was mainly attributed to intermolecular hydrogen bonding, while no significant responses was recorded against sixteen common volatile organic chemicals.

Low-temperature Fast-curing Cationic Latent Curing Agent for One-component Epoxy Adhesives for Electronic Materials (전자 재료용 일액형 에폭시 접착제를 위한 저온 속경화 잠재성 양이온 경화제)

  • So Hyun An;Han Gyeol Jang;Young Hoon Joung;Seung Jun Kim;Myung Woong Kim;Felix Sunjoo Kim;Jaewoo Kim
    • Composites Research
    • /
    • v.37 no.5
    • /
    • pp.393-401
    • /
    • 2024
  • Epoxy is a thermosetting polymer with excellent properties such as heat and chemical resistance, making them essential in various industrial fields including electronics. The performance of epoxy is highly dependent on the type of curing agent used. Among them, sulfonium-based latent curing agents are notable for their fast curing speed, high curing hardness, and specificity to certain temperatures, making them attractive for manufacturing anisotropic conductive films in electronic materials where single-component epoxy is required. However, sulfonium-based latent curing agents face challenges in industrial application due to issues with low yield and purity. This study optimized the synthesis conditions for benzyl and naphthyl-type sulfonium curing agents (B-Sul+SbF6-, N-Sul+NCyF-, N-Sul+NFSI-). By adjusting reaction time, reaction temperature, and reactant ratios, yield was maximized, significantly reducing both reaction time and temperature. The three optimized curing agents were evaluated for their thermal and mechanical properties to assess curing behavior and storage stability. The results confirmed that stable curing performance was maintained even after mixing. This study aims to expand the industrial applicability of sulfonium curing agents.

The study of ethanol electro-oxidation using ternary electrocatalysts (삼원소 전극촉매 이용에 따른 에탄올 산화반응에 관한 연구)

  • Noh, Chang-Soo;Sohn, Jung-Min
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.191-194
    • /
    • 2009
  • PtRu based and PtSn based ternary catalysts were prepared by a conventional impregnation method using NaBH4 as reducing agent. The alloy formation, crystalline size and chemical composition of the in-house catalysts were determined by XRD, TEM and EDX, respectively. The chemical compositions of in-house catalysts were quite similar to the nominal value and good alloy formations were also observed. Further, crystalline sizes of ternary catalysts were comparatively smaller than binary catalysts and were approximately 3.5 ~ 5.5 nm. The electrochemical measurements were carried out in the solution 1 M $H_2SO_4$ with 1 M $C_2H_5OH$ at room temperature. LSV results obtained that ternary catalysts were higher current densities and specific activities. Especially, in case of tungsten addition system, Pt5Sn4W/C have the highest specific activities values and was approximately 21.2 and 3.1 times higher than that of PtRu/C and PtSn/C electrocatalyst.

  • PDF

Sustainable production of natural products using synthetic biology: Ginsenosides

  • So-Hee Son;Jin Kang;YuJin Shin;ChaeYoung Lee;Bong Hyun Sung;Ju Young Lee;Wonsik Lee
    • Journal of Ginseng Research
    • /
    • v.48 no.2
    • /
    • pp.140-148
    • /
    • 2024
  • Synthetic biology approaches offer potential for large-scale and sustainable production of natural products with bioactive potency, including ginsenosides, providing a means to produce novel compounds with enhanced therapeutic properties. Ginseng, known for its non-toxic and potent qualities in traditional medicine, has been used for various medical needs. Ginseng has shown promise for its antioxidant and neuroprotective properties, and it has been used as a potential agent to boost immunity against various infections when used together with other drugs and vaccines. Given the increasing demand for ginsenosides and the challenges associated with traditional extraction methods, synthetic biology holds promise in the development of therapeutics. In this review, we discuss recent developments in microorganism producer engineering and ginsenoside production in microorganisms using synthetic biology approaches.

A Study on the Properties of Epoxy Based Powder Coating with Various Curing Agents (에폭시 분체도료의 경화제 종류에 따른 물성에 관한 연구)

  • Park, Jae-Hong;Shin, Young-Jo
    • Applied Chemistry for Engineering
    • /
    • v.9 no.1
    • /
    • pp.58-65
    • /
    • 1998
  • Substituted dicyandiamide(Sub-DICY), Accelerated dicyandiamide(Acc-DICY), Trimellitic anhydride(TMA), Pyromellitic dianhydride(PMDA) and Phenolic curing agent(Ph.C.A.) are mainly used for epoxy powder coating curing agent. Various characteristics of epoxy films fully cured by optimum condition such as mechanical properties like $T_g$, tensile strength, elongation at break hardness, abrasion resistance and chemical properties like water absorption, acid resistance, alkali resistance and electrical properties, corrosion resistance are determined by various measuring devices and analyses devices. In conclusion, phenolic curing agent was shown excellent thoughness but severe color change as temperature increased. Acid anhydride has excellent insulation properties and color stability at elevated temperature but lower thoughness and adhesion to substrate. DICY curing agent was shown high water absorption and severe color chance as temperature increased.

  • PDF

Electrochemical Behaviors of Activated Carbons Prepared from Polymeric Precursor

  • Park, Soo-Jin;Lee, Eun-Jung;Kim, Byung-Joo;Lee, Young-Seak
    • Carbon letters
    • /
    • v.8 no.2
    • /
    • pp.134-136
    • /
    • 2007
  • In this work, activated carbons (ACs) were prepared from polystyrene-based cation-exchangeable resin (PSI) by a chemical activation with KOH as an activating agent. The surface morphologies were observed by using SEM, and the textural properties were investigated by using nitrogen adsorption at 77 K. From the experimental results, it was found that the well-developed micro- and mesopores were produced by a chemical activation, and the textural properties including specific surface areas and pore volumes were greatly enhanced. The electrochemical behaviors of the ACs showed similar phenomena with that of textural properties. These results indicated that KOH activation played an important role in the changes of surface, and pore structures, resulting in enhancing the electrochemical properties of the ACs prepared in present work.

The Effect of Chemical Structure of Main Monomers and Cross-linking Monomers for Acrylic Co-polymers

  • Kang, Eun-Jin;Cheon, Ji-Yeon;Lee, Yoon-Gu;Choi, Jae-Hong
    • Elastomers and Composites
    • /
    • v.57 no.2
    • /
    • pp.29-39
    • /
    • 2022
  • In this research, the relationships between the chemical structures of 10 different acrylate monomers with 3 different cross-linking monomers were evaluated. The thermal stabilities of the prepared copolymers were evaluated by their weight-loss percentage through thermogravimetric analysis, and their glass-transition temperatures were analyzed using differential scanning calorimetry. Based on the results, some relationships between the chemical structures of the monomers and their properties were derived and are discussed herein.

In-vitro Tests of Topical Skin Protectants using a Flow-Through Diffusion Cell System Containing Excised Hairless Mouse Skin (생체 피부조직을 이용한 피부보호제 in-vitro 시험평가)

  • Lee, Eun Young;Choi, Hoo Kyun;Kim, Sang Woong;Seo, Dong Sung;Joe, Hae Eun;Yu, Chi Ho;Kim, Chang Hwan;Cho, Young
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.434-442
    • /
    • 2022
  • Highly toxic chemical warfare agents(CWA) could be used in chemical warfare and terrorism. The protection of skin is crucial for civilians and soldiers, because the primary routes of exposure to CWA are inhalation and skin absorption. Thus, topical skin protectants(TSP) have been studied and developed in many countries to complement protective equipments. In this study, in-vitro test procedure was optimized and established using a flow-through diffusion cell system containing excised hairless mouse skin in an attempt to assess the effectiveness of various TSP formulations against nerve agent simulants. In addition, the test results on the formulations including the ingredients used in SERPACWA(Skin Exposure Reduction Paste Against Chemical Warfare Agent) and IB-1(TSP of Israel) were included, indicating that the formulations with perfluorinated compounds were more effective than the glycerin-based formulations.