• Title/Summary/Keyword: chemical-based agent

Search Result 348, Processing Time 0.031 seconds

Utilizability of Waste Concrete Powder as a Material for Soil Pavement (흙도로포장용 재료로서 폐콘크리트 미분말의 활용성 연구)

  • Kim, Yong-Jic;Choi, Yun-Wang;Kim, Young-Jin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.3
    • /
    • pp.277-282
    • /
    • 2015
  • This study is conducted to utilize waste concrete powder (WCP) made as a by-product manufacturing high quality recycled aggregate. The blaine fineness of the used waste concrete powder was $928cm^2/g$. As the main characteristic of waste concrete powder, it showed an angular type similar to cement, but hydrated products were attached on the surface of particles. In addition, the size of the particles of waste concrete powder was larger than OPC and in terms of chemical components it had higher $SiO_2$ contents. For using WCP in soil cement-based pavement, the qualities, physical and chemical properties, of WCP should be researched. In the first step, the specified compressive strength of mortar for two types of clay sand soil and clay soil respectively was experimented to be 15 MPa and then optimum mixing ratio of chemical solidification agent were decided in the range of 1.5 - 3.0% in the replacement with cement weight content. In the second step, based on the prior experimental results, recycling possibility of WCP in soil cement-based pavement was studied. In the result of experiment the mixing ratio of WCP were 5, 10, 15 and 20% in the replacement with soil weight and the compressive strength of mortar was somewhat decreased according to the increase of the mixing ratio of WCP.

Physical Properties and Cleaning Ability of New Cleaning Agents Based on 2,2,2-trifluoroethanol (TFEA) (2,2,2-trifluoroethanol (TFEA)를 기초로한 세정제의 물성 및 세정성 영향 연구)

  • Cha, An Jung;Park, Ji Na;Kim, Honggon;Bae, Jae Heum
    • Applied Chemistry for Engineering
    • /
    • v.16 no.4
    • /
    • pp.533-541
    • /
    • 2005
  • Non-aqueous cleaning agents were formulated with 2,2,2-trifluoroethanol (TFEA) and hydrofluoroether (HFE), and their physical properties and cleaning abilities were examined. TFEA-based aqueous cleaning agents were also formulated with nonionic surfactants, hydrotropes and builders, and their cleaning abilities were compared. Possibilities of these cleaning agents as substitutes for CFC-113 and 1,1,1-TCE were finally evaluated. In this work, fluxes, cutting oils, greases, and fluoric oils were selected as model contaminants for cleaning experiments. These contaminants have different properties of water-solubility or hydrophilicity, and fat-solubility or lypophilicity. Cleaning abilities of TFEA-based cleaning agents were analyzed and compared through the measurement of contaminant weight changes as a function of cleaning time, and their possibilities as alternative cleaning agents were evaluated. As a result, it was shown that TFEA and HFE-based non-aqueous cleaning agents have quite a good cleaning power for fluxes and fluorine soils but low one for greases. And TFEA-based agueous cleaning agents which consisted of nonionic surfactants, hydrotrope, and builders were very effective for cleaning fluxes and greases under certain formulation conditions. Thus, it was revealed that the TFEA-based cleaning agents were very effective for cleaning specific contaminants and can be used as substitutes for CFC-113 and 1,1,1-TCE in some industrial applications.

A Study on the Rheological Properties of Branched Polypropylene/silicate Composites (분지형 폴리프로필렌/실리케이트 복합체의 유변학적 특성 연구)

  • Dahal, Prashanta;Yoon, Kyung Hwa;Kim, Youn Cheol
    • Applied Chemistry for Engineering
    • /
    • v.22 no.6
    • /
    • pp.679-684
    • /
    • 2011
  • Branched polypropylenes (LCB-PP) with a long chain branch were prepared by the solid-state and molt-state reaction. Divinylbenzene (DVB), 1,4-benzenediol (RES), and furfuryl sulphide (FS) were used as branching agents of fabricate LCB-PP/silicate composites. Chemical structures, thermal properties, and rheological properties of the LCB-PP were determined by FT-IR, DSC, TGA, and dynamic rheometer (ARES). The chemical structure of the LCB-PP was confirmed by the existence of =C-H stretching peak of the branching agent at $3100cm^{-1}$. From DSC and TGA results, the melting reaction was more effective than the solid state reaction in the manufacture of LCB-PP, which was additionally certified by rheological properties. Based on rheological properties, FS was the best for branching efficiency of PP. Compared to PP, LCB-PPs indicated an increase of complex viscosity in the low frequency and shear thinning tendency, and G'-G" plot represented an increase in elasticity and the heterogeneousness in a melt state. Rheological properties of LCB-PP/silicate composites were observed with the silicate content. When 5 wt% silicate was added in LCB-PP, distinct changes in the shear thinning and the slope of G'-G" plots were observed.

Characteristics of CL-SPEEK/HPA Membrane Electrodes with Pt-Ni and Pt-Co Electrocatalysts for Water Electrolysis (전극 촉매 Pt-Ni 및 Pt-Co를 이용한 수전해용 공유가교 CL-SPEEK/HPA 막전극의 특성)

  • Woo, Je-Young;Lee, Kwang-Mun;Jee, Bong-Chul;Chung, Jang-Hoon;Moon, Sang-Bong;Kang, An-Soo
    • Journal of Hydrogen and New Energy
    • /
    • v.21 no.1
    • /
    • pp.26-34
    • /
    • 2010
  • The electrocatalystic prperties of Pt-Co and Pt-Ni with heteropolyacids (HPAs) entrapped in covalently cross-linked sulfonated poly(ether ether ketone) (CL-SPEEK)/HPA membranes were investigated for water electrolysis. The HP As, including molybdophosphoric acid (MoPA), and tungstophosphoric acid (TPA) were both used as membrane additives and electrocatalysts. The membrane electrode assembly (MEA) was prepared by a nonequilibrium impregnation-reduction (I-R) method. $Pt(NH_3)_4Cl_2$, $NiCl_2$ and $CoCl_2$ as electrocatalytic materials and $NaBH_4$ as reducing agent were used. I order to enhance electrocatalytic activity, the catalyst layer prepared above was electrodeposited (Dep) with HP A. Surface morphologies and physico-chemical properties of MEA were investigated by means of SEM, EDX and XRD. The electrocatalytic properties of composite membranes such as the cell voltage and coulombic charge in CV were in the order of magnitude: CL-SPEEK/MoPA40 (wt%) > CL-SPEEK/TPA30 > Nafion117. In the optimum cell applications for water electrolysis, the cell voltage of Pt/CL-SPEEK-MoPA40/Pt-Co (Dep-MoPA) and Pt/CL-SPEEK-TPA30/Pt-Co (Dep-TPA) was 1.75 Vat $80^{\circ}C$ and $1\;A/cm^2$ and voltage efficiency was 87.1%. Also, the observed activity of Pt-Co (84:16 atomic ratio by EDX) is a little higher than that of Pt-Ni (86: 14). The current density peak of electrodeposited electrodes were better a little than those of unactivated electrodes based on the same membranes.

The Thermal Properties Analysis of the Mixtures Composed with Epoxy Resin and Amine Curing Agent (에폭시 수지/방향족 아민 경화물의 배합비 변화에 따른 열적 특성 분석)

  • Kim, Daeyeon;Kim, Soonchoen;Park, Young-Il;Kim, Young Chul;Lim, Choong-Sun
    • Journal of Adhesion and Interface
    • /
    • v.15 no.3
    • /
    • pp.100-108
    • /
    • 2014
  • In this work, a series of molar ratios composed with YD-128 and DDM were chosen based on the viscosity analysis. The mixtures of YD-128 and DDM with the different molar ratios were cured at $170^{\circ}C$ for 15 min followed by post cure at $190^{\circ}C$ for two hours. The thermal properties of the cured samples were investigated with DSC, TGA, DMA, and TMA. The conversion ratio of the mixtures of YD-128 and DDM (1 : 1.1) was calculated by dividing ${\Delta}H$ obtained from DSC experiments for each cured sample by ${\Delta}H$. The TGA data of the cured samples showed that the thermal stability and thermal degradation activation energy were proportional to the amount of DDM in the mixtures. However, the highest tan ${\delta}$, and the lowest thermal expansion data with DMA and TMA respectively were obtained from the stoichiometric mixture of YD-128 and DDM. Furthermore, the different ratio of mixtures were applied to test specimens to be cured at $170^{\circ}C$ to measure single lap shear strength with universal testing machine.

Experimental and FEMLAB Simulation Study of Ibuprofen Racemate Separation in HPLC (Ibuprofen Racemate의 HPLC 분리실험과 FEMLAB 전산모사 연구)

  • Lee, Eun;Chang, Sang-Mork;Kim, Jong-Min;Kim, Woo-Shick;Kim, In-Ho
    • KSBB Journal
    • /
    • v.21 no.3
    • /
    • pp.224-229
    • /
    • 2006
  • FEMLAB is a powerful interactive environment for modeling, solving all kinds of scientific and engineering problems based on partial differential equations(PDEs). Separation process of chiral compound in HPLC columns was simulated by FEMLAB. To study change of elution profile with isotherm models, non-competitive and competitive Langmuir adsorption isotherm were adopted. Separated material was (R, S)-ibuprofen [(R, S)-2-(4-isobutyl phenyl) propionic acid], an anti-inflammatory agent, which retain the pharmacological activity in the (S)-(+)-enantiomer. Sample concentrations were changed from 0.5 mg/ml to 2.0 mg/ml at a flow rate of 1 ml/min and flow rate varied from 1 ml/min to 3 ml/min at an ibuprofen concentration of 2.0 mg/ml and $20{\mu}l$ of injection volume. Simulated results were well fitted with experimental data.

Synthesis and characterization of PPG-based urethane-modified epoxy resin for enhancing impact resistance of epoxy composite resin (에폭시 복합수지의 내충격성을 향상을 위한 PPG 기반 우레탄 변성 에폭시 합성 및 특성 분석)

  • Hwang, Chiwon;Jeon, Jaehee;Ahn, Dowon;Yu, Youngchang;Lee, Wonjoo
    • Journal of Adhesion and Interface
    • /
    • v.23 no.2
    • /
    • pp.44-52
    • /
    • 2022
  • Epoxy resin has the disadvantage of being easily destroyed by instantaneous impact due to its high crosslinking density despite its high glass transition temperature (Tg) and excellent properties. To compensate for this, in this study, polyol was synthesized by ring opening polymerization of propylene glycol (PPG) diamine, Jeffamine D 2000 and propylene carbonate, and urethane modified epoxy was synthesized using this. The properties of the synthesized urethane modified epoxy were confirmed by FT-IR, H-NMR. To confirm the degree of improvement in impact resistance as an adhesive, a urethane modified epoxy adhesive was prepared by mixing a digylcidyl ether bisphenol A (DGEBA) with curing agent and curing accelerator. Properties test of urethane modified epoxy were shear strength, tensile strength and impact strength. As a result, excellent results were obtained in all test when the ratio of DGEBA : urethane modified epoxy was 8:2.

Synthesis of Silica Coated Silicon Substrate by Recycling Silicon Sludge Generated in Semiconductor Packaging Process and Their Application to Epoxy Molding Compound (반도체 패키징 공정에서 발생하는 실리콘 슬러지의 재활용을 통한 Si@SiO2 제조 및 에폭시 몰딩 컴파운드로의 응용)

  • Yeon-Ryong Chu;Dahee Kang;Ha-Yeong Kim;Jisu Lim;Gyu-Sik Park;Suk Jekal;Chang-Min Yoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.32 no.3
    • /
    • pp.57-66
    • /
    • 2024
  • In this study, silicon sludge from a semiconductor packaging process is recycled to fabricate silica coated silicon-sludge and applied as a filler for an epoxy molding compound(EMC). Silicon-sludge powder(S-sludge) is treated with acid to remove metallic impurities and then coated using the sol-gel method to synthesize silica coated silicon-sludge powder(SS-sludge). The as-synthesized SS-sludge is subsequently mixed with epoxy resin, a curing agent, and carbon black to create an EMC(SS-sludge EMC). The heat dissipation properties of the EMC were examined using an IR camera. IR camera analysis confirmed that the SS-sludge EMC exhibited the highest surface temperature of 58.5℃ compared to SiO2-based EMC. This enhancement in heat dissipation using SS-sludge EMC is attributed to the excellent thermal conductivity(150W/mK) of the silicon substrate and the presence of the silica layer on the SS-sludge surface which effectively enhances the thermal property of the EMC. Therefore, this study successfully demonstrates the recycling of silicon sludge from a semiconductor packaging process by synthesizing silica coated silicon-sludge and suggests a novel application of this material in semiconductor packaging.

Relationship between biofilm formation and the antimicrobial resistance in the Staphylococcus spp. isolated from animal and air

  • Seo, Yeon-Soo;Lee, Deog Young;Kang, Mi Lan;Lee, Won Jung;Yoo, Han Sang
    • Korean Journal of Veterinary Research
    • /
    • v.49 no.3
    • /
    • pp.231-236
    • /
    • 2009
  • Biofilm has been described as a barrier, which produced by microorganisms to survive and protect themselves against various environments, like antibiotic agents. Staphylococcus spp. is a common cause of nosocomial and environmental infection. Thirty-six and thirty-five Staphylococci were isolated from animals and air, respectively. Based on the biofilm forming ability of the bacterium reported in our previous report, relationship between biofilm formation and antibiotic-resistance was investigated in this study. Regarding antibiotics susceptibility, cefazolin was the most effective agent to the bacteria. Strong biofilm-forming Staphylococcus spp. isolates might have a higher antibiotic resistance than weak biofilm isolates regardless of the presence of antibiotic resistance genes (p < 0.05). This result suggested that the chemical complexity of the biofilm might increase the antibiotic resistance due to the decrease of antibiotic diffusion into cells through the extensive matrix.

Identification of Differentially Expressed Genes (DEGs) by Malachite Green in HepG2 Cells

  • Kim, Youn-Jung;Song, Mee;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • v.4 no.1
    • /
    • pp.22-30
    • /
    • 2008
  • Malachite Green (MG), a toxic chemical used as a dye, topical antiseptic and antifungal agent for fish, is highly soluble in water, cytotoxic to various mammalian cells and also acts as a liver tumor promoter. In view of its industrial importance and possible exposure to human beings, MG possesses a potential environmental health hazard. So, we performed with HepG2, a human hepatocellular carcinoma cell line, to identify the differentially expressed genes (DEGs) related to toxicity of MG. And we compared gene expression between control and MG treatment to identify genes that are specifically or predominantly expressed by employing annealing control primer (ACP)-based $GeneFishing^{TM}$ method. The cytotoxicity $(IC_{20})$ of MG was determined above the $0.867{\mu}M$ in HepG2 cell for 48 h treatment. And the DEGs of MG were identified that 5 out of 6 DEGs were upregulated and 1 out of 6 DEGs was down-regulated by MG. Also, MG induced late apoptosis and necrosis in a dose dependent in flow cytometric analysis. Through further investigation, we will identify more meaningful and useful DEGs on MG, and then can get the information on mechanism and pathway associated with toxicity of MG.