• Title/Summary/Keyword: chemical vapor infiltration (CVI) process

Search Result 15, Processing Time 0.018 seconds

Fabrication of SiCf/SiC Composite by Chemical Vapor Infiltration (화학기상침착법에 의한 SiCf/SiC 복합체의 제조)

  • Park, Ji Yeon;Kim, Daejong;Kim, Weon-Ju
    • Composites Research
    • /
    • v.30 no.2
    • /
    • pp.108-115
    • /
    • 2017
  • Among several fabrication processes of $SiC_f/SiC$ composites, the chemical vapor infiltration (CVI) process has attractive advantages in manufacturing complex net-or near-net-shape components at relatively low temperatures, easily controlling the microstructure of the matrix and obtaining the highest SiC purity level. However, it has disadvantages in that the ratio of residual pores in matrix is higher than other processes and processing time is relatively long. To reduce the residual porosity, the whisker-growing-assisted CVI process, which is composed of whisker growth and matrix filling steps has been developed. The whiskers grown before matrix filling may serve to divide the large natural pores between the fibers or bundles so that the matrix can be effectively filled into the finely divided pores. In this paper, the fundamentals of the CVI process for preparation of $SiC_f/SiC$ composites and some experimental results prepared by CVI and whisker-growing-assisted CVI processes are briefly introduced.

Design and Optimization of TG-CVI Heater (TG-CVI용 히터 형상설계 및 최적화)

  • 이성호;홍성석;구형회
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.244-249
    • /
    • 2000
  • Thermal gradient chemical vapor infiltration (TG-CVI) process, which is one of the CVI techniques to densify a porous fiber preform, requires for a heater to have uniform surface temperature distribution. Thus, it is essential to design the shape of the heater and to predict the temperature distribution when the heater has a profile which is not a simple cylinder. In this study, an analytical method has been used to design the inner profile of a conical heater showing uniform temperature distribution, if its outer shape is specified. Temperature distribution on the heater surface has been calculated with the finite difference method and compared with the experimental results. When a heater had a combined profile with a large cone and a small cylinder, temperature was higher in the cylindrical part. To reduce the temperature difference between these areas, a hole-machining method has been proposed including other possible ones. A shape design and optimization program has been made to improve the temperature uniformity of the TG-CVI heater better than that designed with the analytical method.

  • PDF

Effects of the Gas Flow Inside a CVI Reactor on the Densification of a C/C Composite (화학기상침투법 반응로 내부 유동에 따른 탄소/탄소 복합재 밀도화)

  • Kim, Hye-gyu;Ji, Wooseok;Kwon, Hyang Joo;Yoon, Sungtae;Kim, Jung-il
    • Composites Research
    • /
    • v.34 no.4
    • /
    • pp.249-256
    • /
    • 2021
  • In this paper, the densification of a carbon/carbon composite during a chemical vapor infiltration (CVI) process is studied using a chemo-mechanical model. The multi-physics numerical model, developed in the previous research, couples computational fluid dynamics and major chemical reactions in the reactor. The model is especially utilized to study the effect of flow behavior around the preform on the densification. Four different types of "flow-guide" structures are placed to alter the gas flow around the preform. It is shown that the flow pattern and speed around the preform can be controlled by the guide structures. The process simulations demonstrate that the average density and/or density distribution of the preform can be improved by controlling the gas flow around the perform. In this study, a full industrial-scale reactor and process parameter were used.

A Study on the Ultrasonic Nondestructive Evaluation of Carbon/Carbon Composite Disks

  • Im, Kwang-Hee;Jeong, Hyun-Jo;Yang, In-Young
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.320-330
    • /
    • 2000
  • It is desirable to perform nondestructive evaluation (NDE) to assess material properties and part homogeneity because the manufacturing of carbon/carbon brake disks requires complicated and costly processes. In this work several ultrasonic techniques were applied to carbon/carbon brake disks (322mm ad, 135mm id) for the evaluation of spatial variations in material properties that are attributable to the manufacturing process. In a large carbon/carbon disk manufactured by chemical vapor infiltration (CYI) method, the spatial variation of ultrasonic velocity was measured and found to be consistent with the densification behavior in CYI process. Low frequency (e.g., 1-5MHz) through-transmission scans based on both amplitude and time-of-flight of the ultrasonic pulse were used for mapping out the material property inhomogeneity. Images based on both the amplitude and the time-of-flight of the transmitted ultrasonic pulse showed significant variation in the radial direction. The radial variations in ultrasonic velocity and attenuation were attributed to a density variation caused by the more efficient densification of pitch impregnation near the id and od and by the less efficient densification away from the exposed edged of the disk. Ultrasonic velocities in the edges of the disk. Ultrasonic velocities in the thickness direction were also measured as a function of location using dry-coupling transducers ; the results were consistent with the densification behavior. However, velocities in the in-plane directions (circumferential and radial) seemed to be affected more by the relative contents of fabric and chopped fiber, and less by the void content.

  • PDF

Nondestructive Evaluation of Microstructure of SiCf/SiC Composites by X-Ray Computed Microtomography

  • Kim, Weon-Ju;Kim, Daejong;Jung, Choong Hwan;Park, Ji Yeon;Snead, Lance L.
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.6
    • /
    • pp.378-383
    • /
    • 2013
  • Continuous fiber-reinforced ceramic matrix composites (CFCCs) have a complex distribution of porosity, consisting of interfiber micro pores and interbundle/interply macro pores. Owing to the complex geometry of the pores and fiber architecture, it is difficult to obtain representative microstructural features throughout the specimen volume with conventional, destructive ceramographic approaches. In this study, we introduce X-ray computed microtomography (X-ray ${\mu}CT$) to nondestructively analyze the microstructures of disk shaped and tubular $SiC_f$/SiC composites fabricated by the chemical vapor infiltration (CVI) method. The disk specimen made by stacking plain-woven SiC fabrics exhibited periodic, large fluctuation of porosity in the stacking direction but much less variation of porosity perpendicular to the fabric planes. The X-ray ${\mu}CT$ evaluation of the microstructure was also effectively utilized to improve the fabrication process of the triple-layered tubular SiC composite.