• Title/Summary/Keyword: chemical storage tank

Search Result 81, Processing Time 0.032 seconds

Appropriateness Assessment of Dike Height of a Chemical Plant through Development of a Hazardous Chemical Leakage Trajectory Evaluation Module (유해화학물질 누출궤적 평가모듈 개발을 통한 화학공장 방류벽 높이의 적정성 평가)

  • Yoo, Byungtae;Kim, Hyeonggi
    • Fire Science and Engineering
    • /
    • v.33 no.4
    • /
    • pp.121-129
    • /
    • 2019
  • The Chemical Control Act of 2015 was enhanced to ensure the safe management of hazardous chemicals. In particular, there have been substantial changes in the standards for the installation and management of handling facilities for manufacturing and storing hazardous chemicals. However, some standards for handling facilities are difficult to implement due to a lack of physical space or because of safety accidents during facility improvements. Therefore, the Safety assessment system (SAS) has been operating for such facilities since 2018. This study developed a leakage trajectory evaluation module that can easily evaluate the outside of a dike for safety evaluation. We analyzed two case studies on a dike for hydrochloric acid and sulfuric acid storage tanks with this module and suggest a reasonable plan for the facility. We believe that it will be possible to more easily submit SAS reports at chemical plants by using this evaluation module. This study is expected to contribute to the improvement of the safety design of hazardous chemical handling facilities.

Design of Natural Fiber Composites Chemical Container Using Resin Flow Simulation of VARTML Process

  • Lee, Haseung;Park, Gwanglim;Kong, Changduk;Park, Hyunbum
    • International Journal of Aerospace System Engineering
    • /
    • v.1 no.1
    • /
    • pp.21-28
    • /
    • 2014
  • In this study, an investigation on mechanical properties of flax natural fiber composite is performed as a precedent study on the design of eco-friendly structure using flax natural fiber composite. The Vacuum Assisted Resin Transfer Molding-Light (VARTML) manufacturing method is adopted for manufacturing the flax fiber composite panel. The VARTML is a manufacturing process that the resin is injected into the dry layered -up fibers enclosed by a rigid mold tool under vacuum. In this work, the resin flow analysis of VARTM manufacturing method is performed. A series of flax composite panels are manufactured, and several kinds of specimens cut out from the panels are tested to obtain mechanical performance data. Based on this, structural design of chemical storage tank for agricultural vehicle was performed using flax/vinyl ester. After structural design and analysis, the resin flow analysis of VARTM manufacturing method was performed.

Study on the Characterization of Oxidative Degradation of Automotive Gasoline (자동차용휘발유의 산화열화특성 규명 연구)

  • Min, Kyong-Il;Yim, Eui Soon;Jung, Chung-Sub;Kim, Jae-Kon;Na, Byung-Ki
    • Korean Chemical Engineering Research
    • /
    • v.51 no.2
    • /
    • pp.250-256
    • /
    • 2013
  • Gasoline generates organic acid and polymer (gum) by hydrocarbon oxidation depending on the storage environment such as temperature and exposure to sunlight, which can cause metal corrosion, rubber and resin degradation and vehicle malfunction caused by accumulation in fuel supply system. The gasoline which has not been used for a long time in bi-fuel (LPG-Gasoline) vehicle causes problems, and low octane number gasoline have evaporated into the field, but the exact cause has not been studied yet. In this study, we suggest a plan of quality management by investigating the gasoline oxidation behavior. In order to investigate the oxidation behavior of gasoline, changes of gasoline properties were analyzed at various storage conditions such as storage time, storage vessel type (vehicle fuel tank, PE vessel and Fe vessel) and storage circumstances (sunlight exposure and open system, etc.). Currently distributing gasoline and bioethanol blended fuel (blended 10%) were stored for 18 weeks in summer season. The sample stored in PE vessel was out of quality standard (octane number, vapor pressure, etc.) due to the evaporation of the high octane number and low boiling point components through the vessel cap and surface. Especially, the sunlight exposure sample stored in PE vessel showed rapid decrease of vapor pressure and increase of gum. Bioethanol blended fuel showed similar results as gasoline.

Effect of Melt-Spinning Process on Hydrogen Storage Properties of Mass-Produced Ti0.85Zr0.13(Fex-V)0.56Mn1.47Ni0.05 Alloy (대량용해 Ti0.85Zr0.13(Fex-V)0.56Mn1.47Ni0.05 수소저장합금의 용융방사공정을 통한 수소저장특성)

  • Kim, Jinho;Han, Kyusung
    • Journal of Hydrogen and New Energy
    • /
    • v.24 no.5
    • /
    • pp.367-372
    • /
    • 2013
  • Hydrogen storage as a metal hydride is the most promising alternative because of its relatively large hydrogen storage capacities near room temperature. TiMn2-based C14 Laves phases alloys are one of the promising hydrogen storage materials with easy activation, good hydriding-dehydriding kinetics, high hydrogen storage capacity and relatively low cost. In this work, multi-component, hyper-stoichiometric $Ti_{0.85}Zr_{0.13}(Fe_x-V)_{0.56}Mn_{1.47}Ni_{0.05}$ C14 Laves phase alloys were prepared by a vacuum induction melting for a hydrogen storage tank. Since pure vanadium (V) is quite expensive, the substitution of the V element in these alloys has been tried and some interesting results were achieved by replacing V by commercial ferrovanadium (FeV) raw material. In addition, the melt-spinning process, which was applied to the manufacturing of some of these alloys, could make the plateau slopes much flatter, which resulted in the increase of reversible hydrogen storage capacity. The improvement of sloping properties of melt-spun $Ti_{0.85}Zr_{0.13}(Fe_x-V)_{0.56}Mn_{1.47}Ni_{0.05}$ alloys was mainly attributed to the homogeneity of chemical composition.

A Study on the Economic Analysis for Installation Method of Storage Tank in LPG Filling Station (LPG 충전소 저장탱크의 설치방법에 따른 경제성 분석에 관한 연구)

  • Huh, Yong-Jeong;Lim, Ju-Yeon;Youm, Moo-Youl;Leem, Sa-Hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.1
    • /
    • pp.23-28
    • /
    • 2016
  • "Eco-friendly" automobile has been a symbol of the Low Carbon, Green Growth strategy that Korea government decided to pursue. In line with the recent policy trend, a number of new LPG stations are being constructed. However, communities where mass storage are installed have been suffered from risk of serious accidents. In this work, economic analyses for different installation methods has been performed to prevent accidents in LPG filling station. The review shows that the underground storage is beneficial for the maintenance and the effective land use.

A Numerical Study on the Flame Arrestor for Safety Valve of Hydrogen (수소 안전밸브용 역화방지기의 성능 평가에 대한 수치해석 연구)

  • OH, SEUNG JUN;YOON, JEONG HWAN;KIM, SI POM;CHOI, JEONGJU
    • Journal of Hydrogen and New Energy
    • /
    • v.33 no.4
    • /
    • pp.391-399
    • /
    • 2022
  • Hydrogen is one of the energy carriers and has high energy efficiency relative to mass. It is an eco-friendly fuel that makes only water (H2O) as a by-product after use. In order to use hydrogen conveniently and safely, development of production, storage and transfer technologies is required and attempts are being made to apply hydrogen as an energy source in various fields through the development of the technology. For transporting and storing hydrogen include high-pressure hydrogen gas storage, a type of storage technologies consist of cryogenic hydrogen liquid storage, hydrogen storage alloy, chemical storage by adsorbents and high-pressure hydrogen storage containers have been developed in a total of four stages. The biggest issue in charging high-pressure hydrogen gas which is a combustible gas is safety and the backfire prevention device is that prevents external flames from entering the tank and prevents explosion and is essential to use hydrogen safely. This study conducted a numerical analysis to analyze the performance of suppressing flame propagation of 2, 3 inch flame arrestor. As a result, it is determined that, where the flame arrestor is attached, the temperature would be lowered below the temperature of spontaneous combustion of hydrogen to suppress flame propagation.

The Methodology for Prediction and Control of Hazardous Chlorine Gas Flow Releases as Meteorological Data (기상조건에 따른 유해독성염소가스의 가상흐름누출에 관한 예측 및 제어론)

  • Kim, Jong-Shik;Park, Jong-Kyu
    • Applied Chemistry for Engineering
    • /
    • v.10 no.8
    • /
    • pp.1155-1160
    • /
    • 1999
  • The screening methodology modeling, dispersion modeling procedures for continuous and instantaneous releases of the gas phase flow from the storage tank and pressure relief valve were considered. This study was performed to develop the screening methodology for prediction and control of hazardous/toxic gas releases by estimating the 1-hr average maximum ground-level concentration of $Cl_2$ gas vs. downwind distance by incorporating source term model including the general/physical properties of released material and release mode of the $Cl_2$ storage tank of the chemical plant facilities, dispersion model, and meteorological/topographical data into the TSCREEN model. As the results of the study, it was found that dispersion modes of the dense gas were affected by the state of the released material, the released conditions, physical-chemical properties of released material, and the released modes (continuous and instantaneous releases), and especially largely affected by initial (depressurized) density of the released material and release emission rate as well as the wind velocity. Especially, this study was considered to release hazardous material as meteorological data. It was thought that this screening methodology can be useful as a preliminary guideline for application of the refined analysis model by developing the generic sliding scale methodology for various senarios selected.

  • PDF

Water Quality Change Characteristics of Treated Water in Distribution System of Water Treatment Plant of Jeiu City (제주시 정수장 처리수의 급수과정별 수질변화 특성)

  • Han, Kyung-Yong;Lee, Min-Gyu;Chung, Ho-Jin;Kam, Sang-Kyu
    • Journal of Environmental Science International
    • /
    • v.16 no.1
    • /
    • pp.81-94
    • /
    • 2007
  • The purpose of this work is to investigate the water quality change characteristics of treated water in water distribution systems of Water Treatment Plants (WTPs) of Jeju City. For this, the raw water, treated water and tap water that did not pass (named as not pass-tap water) and passed through the water storage tank (named as pass-tap water) were sampled and analyzed monthly from September 2001 to August 2002, for four (W, S, B and O) WTPs except for D WTP (where treated water is not supplied continuously) among WTPs of Jeju City. The concentrations of $NO_3^-$ and $Cl^-$ of treated water in distribution systems changed little, but changed seasonally, which is considered to be based on the seasonal variation of the quality of raw water. The pH of treated water changed little in distribution systems for S WTP, but for the other WTPs, the pH of not pass-tap water was similar to that of treated water and the pH of pass-tap water was higher than that of treated water. The turbidity of treated water in distribution systems changed little except for W2 of W WTP and S4 and S5 of S WTP, where it was higher than that of each treated water. The residual chlorine concentrations between treated water and not pass-tap water changed little, but those between treated water and pass-tap water changed greatly, based on the its long residence time in water storage tank and so its reaction with organic matter, etc or its evaporation. The concentrations of TTHMs (total trihalomethanes) and $CHCl_3$ that induce cancers in water distribution systems of these WTPs, were much lower than their water quality criteria and those in other cities. The concentrations of TTHMs of treated water and not pass-tap water were similar, but concentrations of pass-tap water were 1.5 to 2.0 times higher than those of treated water and not pass-tap water, due to the reaction of residual chlorine and organic matter, etc, with the result of long residence time in water storage tank.

Process Hazard Review and Consequence Effect Analysis for the Release of Chlorine Gas from Its Storage Tank (염소저장탱크에서의 가스 누출시 공정위험검토 및 결과영향분석)

  • Ko, Jae-Sun;Kim, Hyo
    • Fire Science and Engineering
    • /
    • v.17 no.3
    • /
    • pp.61-73
    • /
    • 2003
  • Most of the accidents occurred from the chemical plants are related to the catastrophic gas release events when the large amount of toxic materials is leaked from its storage tank or transmitting pipe lines. In this case, the greatest concerns are how the spreading behaviors of leakages are depended on the ambient conditions such as air stability and other environmental factors. Hence, we have focused on the risk assessments and consequential analysis for chlorine as an illustrative example. As appeared in the result, Fire & Explosion Index depicted it a bit dangerous with presenting the comprehensive degrees of hazard 90.7. And as a result of Phast6.0/ALOHA, the trends of each scenario appeared considerably identical although there are some differences in the resulting effects according to the input data for the Gas Model. The consequence analysis is performed numerically based on the dense gas mode. In the future, using more correct input data, material properties, and topographical configuration, the method of this research will be useful for the guideline of the risk assessment when the release of toxicants breaks out.

Dispersion Modeling Methodology for Hazardous/Toxic Gas Releases from Chemical Plant Facilities (화학장치설비의 유해독성가스 누출에 대한 분산모델링 방법론)

  • Song Duk-Man
    • Journal of the Korean Institute of Gas
    • /
    • v.1 no.1
    • /
    • pp.73-80
    • /
    • 1997
  • This study was performed to develop the dispersion modeling methodology for quantitative prediction of the hazard distance or toxic buffer distance by comparing 10-min average, 30-min average, and 1-hr average maximum ground-level concentration with $Cl_2$ regultaion concentration, IDLH and ERPG-3 concentration for hazardous toxic gas, $Cl_2$ releases from the storage tank of the chemical plant facilities. For this dispersion modeling, the source term model, dispersion model, meteorological and topographical data are incorporated into the SuperChems model, and then the effects of the atmospheric stability, wind speed, and surface roughness length changes on the maxum ground-level concentration were estimated.

  • PDF