• Title/Summary/Keyword: chemical signal

Search Result 592, Processing Time 0.025 seconds

The Reactivity of Thiopyrylium Compound. Reduction of Thiopyrylium Cation by Alkali Metals-Evidence of Thiabenzene Radical

  • Joo, Wan-Chul;Kim, Chung-Kyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.1 no.3
    • /
    • pp.98-101
    • /
    • 1980
  • For the first time we have synthesized thiabenzene radical by the reaction of thiopyrylium cation with alkali metals. As might be expected for a free radical, ESR-spectrum of 2,4,6-triphenylthiabenzene radical shows the single signal with g-value of 2.0045. The proton signal of 2,4,6-triphenylthiabenzene radical in nmr spectrum shifts to the higher field than that of 2,4,6-triphenylthiopyrylium cation by ca. 0.5 ppm. From the UV-spectrum of thiabenzene radical the presence of 6${\pi}$ non-benzenoid aromatic system was observed as in the case of thiopyrylium cation. The reactivity of alkali metals with thiopyrylium cation increases in the order of decreasing ionization energy, Li

Dielectric Properties and an EPR Study of Cu- or Zr-Doped BaTiO₃ Ceramics

  • 이미녕;박윤창
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.10
    • /
    • pp.908-911
    • /
    • 1995
  • The EPR spectra of Cu-or Zr-doped BaTiO3 ceramics exhibited absorption signals with g∥=2.380 and g⊥=2.063 which are assigned to Ba1+(Ba2+ + e'→Ba1+) ion reduced by an electron that was produced from the oxygen vacancy (VO..). The intensity of these signals decreased as the temperature increased indicating that Ba1+ was changed to Ba2+ as the temperature increased. These ceramics also showed the EPR signal with g=1.997 around TC which arises from ionized Ba-vacancies, VBa'(VBa + e'→VBa'. In the orthorhombic and tetragonal phase region g=1.997 signal was not seen. The electrons generating from the oxidation of Ba1+ and ionized Ba-vacancies may contribute to a space charge which is responsible for a dielectric relaxation of these samples.

Potentiometric Homogeneous Enzyme-Linked Binding Assays for Riboflavin and Riboflavin Binding Protein

  • 김진목;김혜진;김미정;이동주;한상현;차근식
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.11
    • /
    • pp.1018-1022
    • /
    • 1996
  • Adenosine deaminase (ADA) has been utilized as the label in devising a potentiometric homogeneous assay for riboflavin and riboflavin binding protein (RBP). The proposed homogeneous assay method employs an ADA-biotin conjugate as the signal generator and an avidin-riboflavin conjugate as the signal modulator in the solution phase. The catalytic activity of the ADA-biotin conjugate is inhibited in the presence of an excess amount of the avidin-riboflavin conjugate, and the observed inhibition is reversed in an amount proportional to the concentration of RBP added. When the analyte riboflavin is added to this mixture of ADA-biotin, avidin-riboflavin and RBP, the activity of the enzyme conjugate is re-inhibited in an amount proportional to the concentration of riboflavin. Since the enzyme label used in this system is ADA, an ammonia-producing enzyme, a potentiometric rather than photometric detection scheme is used to monitor the enzymatic activity in the assay.

Enhanced Performance of Immunoassays with Affinity-Purified Analyte-Enzyme Conjugates as Signal Generators

  • 백세환
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.5
    • /
    • pp.515-519
    • /
    • 1997
  • In a competitive enzyme immunoassay, the performance was tested with different analyte-enzyme conjugates (signal generators) in their binding constants to antibody. Analyte (progesterone)-enzyme (glucose oxidase; GO) conjugates were chemically synthesized and purified by using a gel column with an immobilized antibody to progesterone. In an elution range from the column, four peaks were detected by measuring total enzyme activities. Results from further analysis indicated that the first peak contained mainly unreacted GO while the next three peaks conjugated GO with progesterone. These three conjugate preparations were compared in dose-response curves along with the unpurified mixture. The purified conjugates showed higher detection capabilities than did the mixture. Especially, the preparation in the second peak next to the free GO peak improved the detection limit five times. This performance was comparable to that of a progesterone-horseradish peroxidase conjugate that has been identified to have one progesterone ligand.

$CO_2$ Laser Absorption Measurement of $CH_3CH_2Br$ using Photoacoustic Method

  • Jang Soo Shin;Kyung Hoon Jung;Cheol Jung Kim
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.5
    • /
    • pp.553-556
    • /
    • 1992
  • The ${CO}_2$ laser absorption measurement of ${CH}_3{CH}_2Br$ utilizing photoacoustic (PA) technique was performed using a cw and a pulsed ${CO}_2$ lasers. The absorption profile in the ${CO}_2$ laser wavelength region (9-10 ${\mu}$m) and the macroscopic small signal absorption cross section at 10P(20) (10.59 ${\mu}$m, 944 $cm^{-1}$) laser line were measured using a cw ${CO}_2$ laser. The laser fluence dependence on infrared multiphoton absorption (IRMPA) was also studied with a pulsed TEA ${CO}_2$ laser at 10P(20) laser line. In view of monotonic increase of PA signal with the rise of laser fluence, it was suggested that the anharmonicity in pumped vibration mode did not restrict ir multiphoton absorption in ${CH}_3{CH}_2Br$ system as found in large molecular system.

Laser Induced Impedance Changes in Hollow Cathode Lamps

  • Byung Chul Cha;Jae Jung Lee;Ki Beom Lee;Hyo Jin Kim;Gae Ho Lee;Hasuck Kim
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.5
    • /
    • pp.610-614
    • /
    • 1993
  • Laser induced impedance changes in hollow cathode lamps containing sputtered metal atoms have been employed to measure the spectroscopic properties of metal. This technique, known as optogalvanic spectroscopy, has been shown to be a powerful and inexpensive technique for the investigation of atomic and molecular species. Characteristic optogalvanic signals from hollow cathode lamps (HCL) made of different metal species and induced with a pulsed dye laser were observed, and the dependence of the optogalvanic signal on the discharge current and wavelength of laser was measured. Based on the results obtained, the mechanisms involved in evoking the optogalvanic signals were consisted of single-photon absorption, multi-photon absorption, and photoionization. Moreover the current dependence of the optogalvanic signal indicates that the optogalvanic technique could be one of the most sensitive optical methods of detecting atomic species.

Synthesis of a squaric acid-derived molecular probe for near-infrared fluorescence and photoacoustic imaging

  • Jung Eun Park;Yong Dae Park;Jongho Jeon
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.6 no.2
    • /
    • pp.177-181
    • /
    • 2020
  • Dual-modality imaging strategy using near-infrared fluorescence (FLI) and photoacoustic imaging (PAI) demands a suitable probe to enable dual-modular signal production. Herein, we demonstrate a synthetic protocol of small molecular dye for dual-modular FLI and PAI. A condensation reaction between squaric acid and carboxypentyl benzoindolium, and followed by basic hydrolysis to give the benzoindole derived squaraine (BSQ) dye in 49% yield. Next, the carboxylic acid group of BSQ was further functionalized with N-hydroxysuccinimide or azide group for an efficient conjugation with a targeting biomolecule. BSQ showed a maximum fluorescent emission at around 680 nm and the photoacoustic signal reached a maximum intensity at 680-700 nm. Based on these results, we conclude that BSQ analogs will be useful probes for dual-modular (FLI/PAI) imaging studies in animal models.

Studies on Membrane Fouling Monitoring by Fluorescence Nano Particle and Fluorescent Spectrometry (형광 나노 입자 및 형광 분광 분석을 이용한 막오염 측정법 연구)

  • Seo, Mi-Rae;Nam, Mi-Yeon;Kim, Beom-Sik;Nam, Seung-Eun;Kim, In-Chul;Park, You-In
    • Membrane Journal
    • /
    • v.21 no.2
    • /
    • pp.163-170
    • /
    • 2011
  • Membrane fouling control in water treatment may be the main obstacle for wider implementation and lower cost. A novel fluorescent spectroscope sensor device for membrane fouling integrity monitoring has been developed and evaluated in this study. PSf membranes for water treatment has been fabricated with three types of organic fluorescent materials, OB, FP, KCB. The fluorescent signal from membrane surface was analyzed throughout the filtration process. It was found that the fluorescent signal due to the membrane fouling decreased and the developed device is reliable for membrane fouling monitoring.

Effects of Pressure Ratio on Population Inversion in a DF Chemical Laser with Concurrent Lasing

  • Park, Jun-Sung;Baek, Seung-Wook
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.287-293
    • /
    • 2004
  • A numerical simulation is presented for investigating the effects of pressure ratio of $D_2$ injector to supersonic nozzle on the population inversion in the DF chemical laser cavity, while a lasing concurrently takes place. The laser beam is generated between the mirrors in the cavity and it is important to obtain stronger population inversion and more uniform distribution of the excited molecules in the laser cavity in order to produce high power laser beam with good quality. In this study, these phenomena are investigated by means of analyzing the distributions of the DF excited molecules and the F atom used as an oxidant, while simultaneously estimating the maximum small signal and saturated gains and power in the DF chemical laser cavity. For the numerical solution, an 11-species (including DF molecules in various excited states of energies), 32-step chemistry model is adopted for the chemical reaction of the DF chemical laser system. The results are discussed by comparison with two $D_2$injector pressure cases; 192 torr and 388.64 torr. Major results reveal that in the resonator, stronger population inversions occur in the all transitions except DF(1)-DF(0), when the $D_2$injection pressure is lower. But, the higher $D_2$injection pressure provides a favorable condition for DF(1)-DF(0) transition to generate the higher power laser beam. In other words, as the pressure of $D_2$injector increases, the maximum small signal gain in the $V_{1-0}$ transition, which is in charge of generating most of laser power, becomes higher. Therefore, the total laser beam power becomes higher.r.

  • PDF

Free Radical Toxicology and Cancer Chemoprevention

  • Lin, Jen-Kun
    • Toxicological Research
    • /
    • v.17
    • /
    • pp.83-88
    • /
    • 2001
  • Most reactive oxygen species (ROS) are free radicals and implicated in the development of a number of disease processes including artherosclerosis, neurodegenerative disorders, aging and cancer. ROS are byproducts of a number of in vivo metabolic processes and are formed deliberately as part of nor-mal inflammatory response. On the other hand, ROS are generated either as by products of oxygen reduction during xenobiotic metabolism or are liberated as the result of the futile redox cycling of the chemical agents including several chemical carcinogens. A better understanding of the mechanisms of free radical toxicity may yield valuable clue to risks associated with chemical exposures that leading to the development of chronic diseases including cancer. The molecular biology of ROS-mediated alterations in gene expression, signal transduction and carcinognesis is one of the important subjects in free radical toxicology. Epidemiological studies suggest that high intake of vegetables and fruits are associated with the low incidence of human cancer. Many phytopolyphenols such as tea polyphenols, curcumin, resveratrol, apigenin, genistein and other flavonoids have been shown to be cancer chemopreventive agents. Most of these compounds are strong antioxidant and ROS scavengers in vitro and effective inducers of antioxidant enzymes such as superoxide dismutatse, catalase and glutathione peroxidase in vivo. Several cellular transducers namely receptor tyrosine kinase, protein kinase C, MAPK, PI3K, c-jun, c-fos, c-myc, NFkB, IkB kinase, iNOS, COX-2, Bcl-2, Bax, etc have been shown to be actively modulated by phyto-polyphenols. Recent development in free radical toxicology have provided strong basis for understanding the action mechanisms of cancer chemoprevention.

  • PDF